Spelling suggestions: "subject:"schwinden"" "subject:"schwindens""
1 |
Untersuchungen zu schwindungsabhängigen Eigenspannungen und Schädigungsmechanismen in Klebverbindungen /Chudaska, Andreas. January 1995 (has links)
Universiẗat-Gesamthochsch., Diss.--Paderborn, 1995.
|
2 |
Zum Langzeitverhalten von Brettstapel-Beton-VerbunddeckenSchänzlin, Jörg. January 2003 (has links)
Zugl.: Stuttgart, Univ., Diss., 2003.
|
3 |
Hygrische Eigenschaften des ZementsteinsDuckheim, Christian January 2007 (has links)
Zugl.: Duisburg, Essen, Univ., Diss., 2007
|
4 |
Hygrische Eigenschaften des Zementsteins /Duckheim, Christian. January 2008 (has links) (PDF)
Universiẗat, Diss.--Duisburg-Essen, 2007.
|
5 |
Einfluss der Mischungszusammensetzung auf die frühen autogenen Verformungen der Bindemittelmatrix von HochleistungsbetonenFontana, Patrick January 2006 (has links)
Zugl.: Braunschweig, Techn. Univ., Diss., 2006
|
6 |
Die mechanischen Eigenschaften von Stereolithographiematerialien während der AushärtungEschl, Johannes. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2001--Stuttgart.
|
7 |
Untersuchung unterschiedlicher Eigenschaften westafrikanischer Holzarten unter dem Aspekt ihrer Verwendung für IngenieurtragwerkeIssifou-Samarou, Zibilila. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2004--Aachen.
|
8 |
Über LTCC-Werkstoffe aus dem Stoffsystem CaO-La2O3-Al2O3-B2O3Gemeinert, Marion 27 July 2009 (has links) (PDF)
Glaskeramische Komposite, deren Herstellung von Glas- und kristallinen Pulvern ausgeht, bieten vielfältige Möglichkeiten, Werkstoffeigenschaften, wie z.B. Sinterverhalten, thermische Dehnung, mechanische Eigenschaften, chemische Beständigkeit, dielektrische Eigenschaften und Oberflächenqualität für spezielle Anwendungszwecke gezielt einzustellen. Glaskeramische Kompositpulver können zu Folien verarbeitet werden, aus denen mittels der LTCC (Low Temperature Co-fired Ceramics)- Technologie keramische Multilayer hergestellt werden, die insbesondere für das Electronic Packaging von Mikrosystemen eingesetzt werden. Problematisch ist die beim freien Sintern der LTCC-Multilayer auftretende laterale Schwindung, die von relativ hohen Schwindungstoleranzen begleitet ist. Zur Vermeidung der lateralen Schwindung werden Zero Shrinkage-Techniken eingesetzt. Eine neue Möglichkeit Zero Shrinkage beim Sintern von LTCC-Multilayern zu erreichen, besteht in der Anwendung eines self-constrained Laminates. Hierbei wird ein Multilayer eingesetzt, der aus zwei unterschiedlichen Folienarten für innere und äußere Lagen mit deutlich verschiedenen Sintertemperaturen (ΔT > 50 K) aufgebaut wird.
Die Entwicklung von LTCC-Werkstoffen, die als innere Lagen eines self-constrained Laminates zur Verringerung der lateralen Sinterschwindung auf nahezu Null eingesetzt werden können, war Gegenstand der vorliegenden Arbeit. Es wurden hierfür LTCC-Werkstoffe aus dem Stoffsystem CaO-La2O3-Al2O3-B2O3 untersucht, die bei Temperaturen unterhalb 800 °C dicht gesintert werden können. Ausgehend von der Entwicklung geeigneter Gläser auf der Basis von Calciumlanthanborat- sowie Calciumlanthanalumoboratgläsern wurden glaskeramische Komposite unter Zusatz von Korundpulver hergestellt.
Die Komposite kristallisieren während des Brennprozesses nahezu vollständig. Aus der Glasphase kristallisiert Lanthanborat aus und aufgrund der festkörperchemischen Reaktion der calciumboratreichen Restglasphase mit dem Korund bilden sich vor allem Calciumalumoborat bzw. Calciumalumoboratoxid. Die Anteile an neuen Phasen bestimmen die thermischen und dielektrischen Eigenschaften der Werkstoffe. Die wichtigsten der sich bildenden kristallinen Phasen der Komposite, Lanthanborat und Calciumalumoboratoxid wurden separat hergestellt und charakterisiert.
Das Sinter- und Kristallisationsverhalten sowie die thermischen und dielektrischen Eigenschaften der glaskeramischen Komposite wurden in Abhängigkeit von den entwickelten Gläsern, dem Volumenverhältnis von Glas- und kristalliner Komponente im Kompositpulver und der Brenntemperatur untersucht.
Die entwickelten LTCC-Werkstoffe wurden bzgl. ihrer thermischen Eigenschaften an einen zuvor ausgewählten LTCC-Werkstoff für die äußeren Lagen eines self-constrained Laminates angepasst.
Erzielt wurden die Eigenschaftswerte: TEC: ca. 5 x 10-6/K, er: ca. 7 und tan δ: ≤ 1 x 10-3.
Zur Überprüfung der Anwendbarkeit wurde der entwickelte LTCC-Werkstoff als innere Lagen in einem LTCC-Multilayer verarbeitet. Dadurch konnte die laterale Schwindung des Multilayers beim Sintern auf < 0,4 % verringert werden.
|
9 |
Die mechanischen Eigenschaften von Stereolithographiematerialien während der AushärtungEschl, Johannes. January 2002 (has links)
Stuttgart, Univ., Diss., 2002.
|
10 |
Über LTCC-Werkstoffe aus dem Stoffsystem CaO-La2O3-Al2O3-B2O3Gemeinert, Marion 23 February 2009 (has links)
Glaskeramische Komposite, deren Herstellung von Glas- und kristallinen Pulvern ausgeht, bieten vielfältige Möglichkeiten, Werkstoffeigenschaften, wie z.B. Sinterverhalten, thermische Dehnung, mechanische Eigenschaften, chemische Beständigkeit, dielektrische Eigenschaften und Oberflächenqualität für spezielle Anwendungszwecke gezielt einzustellen. Glaskeramische Kompositpulver können zu Folien verarbeitet werden, aus denen mittels der LTCC (Low Temperature Co-fired Ceramics)- Technologie keramische Multilayer hergestellt werden, die insbesondere für das Electronic Packaging von Mikrosystemen eingesetzt werden. Problematisch ist die beim freien Sintern der LTCC-Multilayer auftretende laterale Schwindung, die von relativ hohen Schwindungstoleranzen begleitet ist. Zur Vermeidung der lateralen Schwindung werden Zero Shrinkage-Techniken eingesetzt. Eine neue Möglichkeit Zero Shrinkage beim Sintern von LTCC-Multilayern zu erreichen, besteht in der Anwendung eines self-constrained Laminates. Hierbei wird ein Multilayer eingesetzt, der aus zwei unterschiedlichen Folienarten für innere und äußere Lagen mit deutlich verschiedenen Sintertemperaturen (ΔT > 50 K) aufgebaut wird.
Die Entwicklung von LTCC-Werkstoffen, die als innere Lagen eines self-constrained Laminates zur Verringerung der lateralen Sinterschwindung auf nahezu Null eingesetzt werden können, war Gegenstand der vorliegenden Arbeit. Es wurden hierfür LTCC-Werkstoffe aus dem Stoffsystem CaO-La2O3-Al2O3-B2O3 untersucht, die bei Temperaturen unterhalb 800 °C dicht gesintert werden können. Ausgehend von der Entwicklung geeigneter Gläser auf der Basis von Calciumlanthanborat- sowie Calciumlanthanalumoboratgläsern wurden glaskeramische Komposite unter Zusatz von Korundpulver hergestellt.
Die Komposite kristallisieren während des Brennprozesses nahezu vollständig. Aus der Glasphase kristallisiert Lanthanborat aus und aufgrund der festkörperchemischen Reaktion der calciumboratreichen Restglasphase mit dem Korund bilden sich vor allem Calciumalumoborat bzw. Calciumalumoboratoxid. Die Anteile an neuen Phasen bestimmen die thermischen und dielektrischen Eigenschaften der Werkstoffe. Die wichtigsten der sich bildenden kristallinen Phasen der Komposite, Lanthanborat und Calciumalumoboratoxid wurden separat hergestellt und charakterisiert.
Das Sinter- und Kristallisationsverhalten sowie die thermischen und dielektrischen Eigenschaften der glaskeramischen Komposite wurden in Abhängigkeit von den entwickelten Gläsern, dem Volumenverhältnis von Glas- und kristalliner Komponente im Kompositpulver und der Brenntemperatur untersucht.
Die entwickelten LTCC-Werkstoffe wurden bzgl. ihrer thermischen Eigenschaften an einen zuvor ausgewählten LTCC-Werkstoff für die äußeren Lagen eines self-constrained Laminates angepasst.
Erzielt wurden die Eigenschaftswerte: TEC: ca. 5 x 10-6/K, er: ca. 7 und tan δ: ≤ 1 x 10-3.
Zur Überprüfung der Anwendbarkeit wurde der entwickelte LTCC-Werkstoff als innere Lagen in einem LTCC-Multilayer verarbeitet. Dadurch konnte die laterale Schwindung des Multilayers beim Sintern auf < 0,4 % verringert werden.
|
Page generated in 0.057 seconds