• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 600
  • 175
  • 45
  • 22
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 13
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 1048
  • 1048
  • 1048
  • 545
  • 295
  • 192
  • 192
  • 182
  • 179
  • 178
  • 176
  • 176
  • 172
  • 161
  • 160
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Inexpensive science materials for the instruction of the visually handicapped

Baughman, James A January 2011 (has links)
Digitized by Kansas Correctional Industries
82

De-Marginalizing Science in the Early Elementary Classroom: Fostering Reform-Based Teacher Change through Professional Development, Accountability, and Addressing Teachers' Dilemmas

Berg, Alissa Bethany January 2012 (has links)
To develop a scientifically literate populace, students must acquire the motivation and foundational skills for success in science beginning at an early age. Unfortunately, science instruction is often marginalized in elementary schools for reasons including teachers' lack of confidence in teaching science and an overemphasis on literacy and mathematics. This study employed a case study design to examine the impact of teachers' dilemmas, career stage, coaching, and other forms of support on elementary teachers' abilities to teach science more often and in more reform-based ways. The conceptual lenses used to guide this dissertation include the theory related to teacher change, dilemmas, reform-oriented science teaching, and the professional learning continuum. Findings suggest that teachers' dilemmas must be addressed in order for them to move toward more reform-based science teaching practices. It was found that how teachers reconcile their dilemmas is due in part to their career stage, level of readiness, and access to a more knowledgeable other who can assist them in learning and enacting reform-based instruction. Moreover, the likelihood and extent of teacher change appears to be related to teachers recognizing a need to change their practice, developing the capacity to change, feeling accountable to change, and possessing the motivation to change. Implications for teacher educators, professional development providers, and curriculum developers are presented. It is argued that teachers require support the length of their career and, to be effective, this support must be personalized to their diverse and changing needs and responsive to the context in which they teach.
83

Gender, Ethnicity, and Physics Education: Understanding How Black Women Build Their Identities as Scientists

Rosa, Katemari January 2013 (has links)
This research focuses on the underrepresentation of minoritized groups in scientific careers. The study is an analysis of the relationships between race, gender, and those with careers in the sciences, focusing on the lived experiences of Black women physicists, as viewed through the lens of women scientists in the United States. Although the research is geographically localized, the base-line question is clear and mirrors in the researcher's own intellectual development: "How do Black women physicists describe their experiences towards the construction of a scientific identity and the pursuit of a career in physics?" Grounded on a critical race theory perspective, the study uses storytelling to analyze how these women build their identities as scientists and how they have negotiate their multiple identities within different communities in society. Findings show that social integration is a key element for Black women physicists to enter study groups, which enables access to important resources for academic success in STEM. The study has implications for physics education and policymakers. The study reveals the role of the different communities that these women are part of, and the importance of public policies targeted to increase the participation of underrepresented groups in science, especially through after-school programs and financial support through higher education.
84

Increasing Diversity: Modeling of Social Capital for Navigating the Science and Health Professions Pipeline

Rumala, Bernice B. January 2012 (has links)
Social capital theory states that resources, both actual and prospective, are inherently linked to networks and relationships that can be used as opportunities. Therefore, a basic tenet of social capital theory is that "relationships matter." In the science and health profession pipeline, strong mentoring relationships and collaborative research networks are critical elements in developing an individual's capacity for navigating the pipeline and for success and advancement in these fields. However, underrepresented minorities are often bereft of social capital because they lack proper mentorships and are often not part of "inner" circles for networking. Additionally, social capital can be leveraged to develop organizational capacity that supports diversity. In this dissertation, social capital theory is examined through the lens of three pipeline initiatives targeting pre-high school, high school, undergraduate, and graduate-level populations. The three initiatives (E-matching, achieving Successful Productive Academic Research Careers, and Mentoring in Medicine) were evaluated and the results are presented here as three related but unique manuscripts. The particular forms of social capital examined are knowledge, mentorship, and networks needed to navigate the pipeline for science and health professions careers. All three initiatives had significant impact on increasing social capital via the social capital indicators of increased knowledge, mentorship, networks, information and resources. Study results suggest that it would be useful to replicate these initiatives on a larger scale to build social capital at earlier levels of the pipeline to enhance diversity in the science and health professions. Additionally, study results suggest that the social capital obtained from brief interactions in short duration initiatives is valuable as a factor in assisting students to navigate the pipeline; therefore this should not be underestimated. Lastly, a logic model framework is provided for measuring social capital for navigating the STEM and health professions pipeline.
85

Learning STEM Through Integrative Visual Representation

Virk, Satyugjit Singh January 2013 (has links)
Previous cognitive models of memory have not comprehensively taken into account the internal cognitive load of chunking isolated information and have emphasized the external cognitive load of visual presentation only. Under the Virk Long Term Working Memory Multimedia Model of cognitive load, drawing from the Cowan model, students presented with integrated animations of the key neural signal transmission subcomponents where the interrelationships between subcomponents are visually and verbally explicit, were hypothesized to perform significantly better on free response and diagram labeling questions, than students presented with isolated animations of these subcomponents. This is because the internal attentional cognitive load of chunking these concepts is greatly reduced and hence the overall cognitive load is less for the integrated visuals group than the isolated group, despite the higher external load for the integrated group of having the interrelationships between subcomponents presented explicitly. Experiment 1 demonstrated that integrating the subcomponents of the neuron significantly enhanced comprehension of the interconnections between cellular subcomponents and approached significance for enhancing recall of the layered molecular correlates of the cellular structures and their interconnections. Experiment 2 corrected time on task confounds from Experiment 1 and focused on the cellular subcomponents of the neuron only. Results from the free response essay subcomponent subscores did demonstrate significant differences in favor of the integrated group as well as some evidence from the diagram labeling section. Results from free response, short answer and What-If (problem solving), and diagram labeling detailed interrelationship subscores demonstrated the integrated group did indeed learn the extra material they were presented with. This data demonstrating the integrated group learned the extra material they were presented with provides some initial support for the assertion that chunking mediated the greater gains in learning for the neural subcomponent concepts over the control.
86

Exploring the Development of Classroom Group Identities in an Urban High School Chemistry Class

Macaluso, Stefania January 2014 (has links)
A key to achieving academic success in science is providing students with meaningful experiences and skills to negotiate how these experiences affect them and the society in which they live. Although students strive for academic success, a challenge that faces many urban science students and their teachers is finding ways to promote student engagement in the science classroom. In order to support students in urban settings and to better identify the ways in which students may better learn science concepts and develop a sense of belonging or affiliation to science, this qualitative research study explores the development of a classroom group identity (CGI) based on the frameworks of social identity theory, interaction ritual chain theory, and communities of practice. The interactions and experiences of eighteen student participants in a Bronx high school chemistry class were studied over the course of a full school year. Using a conceptual lens of classroom group identity, a model construct and definition were built identifying four stages of CGI development. At the culmination of the study, a positive change in perceptions, attitudes, leadership skills, and classroom behaviors in learning science was primarily observed by two students developing a CGI. The study has implications for the teaching and learning of high school sciences.
87

Utilizing the National Research Council's (NRC) Conceptual Framework for the Next Generation Science Standards (NGSS): A Self-Study in my Science, Engineering, and Mathematics Classroom

Corvo, Arthur January 2014 (has links)
Given the reality that active and competitive participation in the 21st century requires American students to deepen their scientific and mathematical knowledge base, the National Research Council (NRC) proposed a new conceptual framework for K-12 science education. The framework consists of an integration of what the NRC report refers to as the three dimensions: scientific and engineering practices, crosscutting concepts, and core ideas in four disciplinary areas (physical, life and earth/spaces sciences, and engineering/technology). The Next Generation Science Standards (NGSS), which are derived from this new framework, were released in April 2013 and have implications on teacher learning and development in Science, Technology, Engineering, and Mathematics (STEM). Given the NGSS's recent introduction, there is little research on how teachers can prepare for its release. To meet this research need, I implemented a self-study aimed at examining my teaching practices and classroom outcomes through the lens of the NRC's conceptual framework and the NGSS. The self-study employed design-based research (DBR) methods to investigate what happened in my secondary classroom when I designed, enacted, and reflected on units of study for my science, engineering, and mathematics classes. I utilized various best practices including Learning for Use (LfU) and Understanding by Design (UbD) models for instructional design, talk moves as a tool for promoting discourse, and modeling instruction for these designed units of study. The DBR strategy was chosen to promote reflective cycles, which are consistent with and in support of the self-study framework. A multiple case, mixed-methods approach was used for data collection and analysis. The findings in the study are reported by study phase in terms of unit planning, unit enactment, and unit reflection. The findings have implications for science teaching, teacher professional development, and teacher education.
88

Sounding Out Science: Incorporating Audio Technology to Assist Students with Learning Differences in Science Education

Gomes, Clement January 2014 (has links)
With the current focus to have all students reach scientific literacy in the U.S, there exists a need to support marginalized students, such as those with Learning Disabilities/Differences (LD), to reach the same educational goals as their mainstream counterparts. This dissertation examines the benefits of using audio assistive technology on the iPad to support LD students to achieve comprehension of science vocabulary and semantics. This dissertation is composed of two papers, both of which include qualitative information supported by quantified data. The first paper, titled Using Technology to Overcome Fundamental Literacy Constraints for Students with Learning Differences to Achieve Scientific Literacy, provides quantified evidence from pretest and posttest analysis that audio technology can be beneficial for seventh grade LD students when learning new and unfamiliar science content. Analysis of observations and student interviews support the findings. The second paper, titled Time, Energy, and Motivation: Utilizing Technology to Ease Science Understanding for Students with Learning Differences, supports the importance of creating technology that is clear, audible, and easy for students to use so they benefit and desire to utilize the learning tool. Multiple correlation of Likert Survey analysis was used to identify four major items and was supported with analysis from observations of and interviews with students, parents, and educators. This study provides useful information to support the rising number of identified LD students and their parents and teachers by presenting the benefits of using audio assistive technology to learn science.
89

Changes in Urban Youths' Attitude Towards Science and Perception of a Mobile Science Lab Experience

Fox, Jared January 2015 (has links)
This dissertation examined changes in urban youth's attitude towards science as well as their perception of the informal science education setting and third space opportunity provided by the BioBus, a mobile science lab. Science education researchers have often suggested that informal science education settings provide one possible way to positively influence student attitude towards science and engage marginalized urban youth within the traditional science classroom (Banks et al., 2007; Hofstein & Rosenfeld, 1996; National Research Council, 2009; Schwarz & Stolow, 2006; Stocklmayer, Rennie, & Gilbert, 2010). However, until now, this possibility has not been explored within the setting of a mobile science lab nor examined using a theoretical framework intent on analyzing how affective outcomes may occur. The merits of this analytical stance were evaluated via observation, attitudinal survey, open-response questionnaire, and interview data collected before and after a mobile science lab experience from a combination of 239 students in Grades 6, 8, 9, 11, and 12 from four different schools within a major Northeastern metropolitan area. Findings from this study suggested that urban youth's attitude towards science changed both positively and negatively in statistically significant ways after a BioBus visit and that the experience itself was highly enjoyable. Furthermore, implications for how to construct a third space within the urban science classroom and the merits of utilizing the theoretical framework developed to analyze cultural tensions between urban youth and school science are discussed. Key Words: Attitude towards science, third space, mobile science lab, urban science education
90

Facilitating Cultural Border Crossing in Urban Secondary Science Classrooms: A Study of Inservice Teachers

Monteiro, Anna Karina January 2015 (has links)
Research acknowledges that if students are to be successful science, they must learn to navigate and cross cultural borders that exist between their own cultures and the subculture of science. This dissertation utilized a mixed methods approach to explore how inservice science teachers working in urban schools construct their ideas of and apply the concepts about the culture of science and cultural border crossing as relevant to the teaching and learning of science. The study used the lenses of cultural capital, social constructivism, and cultural congruency in the design and analysis of each of the three phases of data collection. Phase I identified the perspectives of six inservice science teachers on science culture, cultural border crossing, and which border crossing methods, if any, they used during science teaching. Phase II took a dialectical approach as the teachers read about science culture and cultural border crossing during three informal professional learning community meetings. This phase explored how teachers constructed their understanding of cultural border crossing and how the concept applied to the teaching and learning of science. Phase III evaluated how teachers' perspectives changed from Phase I. In addition, classroom observations were used to determine whether teachers' practices in their science classrooms changed from Phase I to Phase III. All three phases collected data through qualitative (i.e., interviews, classroom observations, and surveys) and quantitative (Likert items) means. The findings indicated that teachers found great value in learning about the culture of science and cultural border crossing as it pertained to their teaching methods. This was not only evidenced by their interviews and surveys, but also in the methods they used in their classrooms. Final conclusions included how the use of student capital resources (prior experiences, understandings and knowledge, ideas an interests, and personal beliefs), if supported by science practices and skills increases student cultural capital. With a greater cultural capital, the students experience cultural congruency between their cultures and the culture of science, enabling them to cross such borders in the science classroom. The implications such findings have on teacher training programs and professional development are discussed.

Page generated in 0.1263 seconds