Spelling suggestions: "subject:"seção global"" "subject:"reção global""
1 |
Fluxos de Anosov de codimensão um que são suspensões / Codimension one Anosov flows that are suspensionsMollo, Renato Alejandro Tintaya 13 July 2009 (has links)
O objetivo principal desta dissertação é mostrar um resultado obtido por Plante, o qual estabelece que: qualquer fluxo de Anosov de codimensão um sobre uma variedade diferenciável compacta M de dimensão maior do que 3 com grupo fundamental solúvel é topologicamente equivalente à suspensão de um automorfismo hiperbólico do toro. Este resultado mostra a conjectura de Verjovsky no caso que o grupo fundamental da variedade é um grupo solúvel. A prova deste resultado é baseada no celebre resultado de Schwartzman, o qual fornece um criterio para garantir a existencia de seção transversal global para um fluxo não singular / O objetivo principal desta dissertação é mostrar um resultado obtido por Plante em [12] o qual estabelece que: qualquer fluxo de Anosov de codimensão um sobre uma variedade diferenciável compacta M de dimesão maior o que 3 com grupo fundamental solúvel é topologicamente equivalente à suspensão de um automorfismo hiperbólico do toro. Este resultado mostra a conjectura de Verjovsky no caso que o grupo fundamental da variedade é um grupo solúvel. A prova deste resultado é baseada no célebre resultado de Schwartzman [15], Teorema 2.17, o qual fornece um critério para garantir a existência de seção transversal global para um fluxo não singular
|
2 |
Fluxos de Anosov de codimensão um que são suspensões / Codimension one Anosov flows that are suspensionsRenato Alejandro Tintaya Mollo 13 July 2009 (has links)
O objetivo principal desta dissertação é mostrar um resultado obtido por Plante, o qual estabelece que: qualquer fluxo de Anosov de codimensão um sobre uma variedade diferenciável compacta M de dimensão maior do que 3 com grupo fundamental solúvel é topologicamente equivalente à suspensão de um automorfismo hiperbólico do toro. Este resultado mostra a conjectura de Verjovsky no caso que o grupo fundamental da variedade é um grupo solúvel. A prova deste resultado é baseada no celebre resultado de Schwartzman, o qual fornece um criterio para garantir a existencia de seção transversal global para um fluxo não singular / O objetivo principal desta dissertação é mostrar um resultado obtido por Plante em [12] o qual estabelece que: qualquer fluxo de Anosov de codimensão um sobre uma variedade diferenciável compacta M de dimesão maior o que 3 com grupo fundamental solúvel é topologicamente equivalente à suspensão de um automorfismo hiperbólico do toro. Este resultado mostra a conjectura de Verjovsky no caso que o grupo fundamental da variedade é um grupo solúvel. A prova deste resultado é baseada no célebre resultado de Schwartzman [15], Teorema 2.17, o qual fornece um critério para garantir a existência de seção transversal global para um fluxo não singular
|
Page generated in 0.0291 seconds