• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pusiau apibrėžto programavimo optimizavimo paketo SeDuMi analizė / Analysis of the Semidefinite programming SeDuMi optimization package

Svorobovič, Andrej 16 August 2007 (has links)
Šiame darbe yra aprašomas optimizavimo paketas SeDuMi Interface ir jam priklausantis skaičiavimo paketas SeDuMi 1.05. Išvardintos paketo savybės, kurios išskiria jį iš kitų optimizavimo paketų. Aprašytos paketo funkcijų reikšmės. Supažindinama su optimizavimo paketų įvairove. Palyginamas pusiau apibrėžtas programavimas su tiesiniu programavimu, kadangi pakete SeDuMi interface realizuoti pusiau apibrėžto programavimo algoritmai. Taip pat lyginami programų skaičiavimų laikai: programų naudojančių SeDuMi paketo funkcijas ir programų su MATLAB funkcijomis. Palyginimui realizuoti, naudojamas klasikinis optimizavimo uždavinys –mažiausių reikšmių elipsoido uždavinys. / The optimization software SeDuMi Interface and it‘s calculation packet SeDuMi 1.05 is described in this work. Distinctive software features are listed. and values of packet’s functions are described. Variety of optimization packets is presented. Semidefinite programming is compared with linear programming, since semidefinite programming algorithms are implemented in the SeDuMi interface. Time of execution of the programs has been also compared: programs using SeDuMi software functions has been compared with programs using MATLAB functions. For the comparison classical optimization problem is used – the minimum volume ellipsoid problem.
2

Computing optimal designs for regression models via convex programming

Zhou, Wenjie 25 August 2015 (has links)
Optimal design problems aim at selecting design points optimally with respect to certain statistical criteria. The research of this thesis focuses on optimal design problems with respect to A-, D- and E-optimal criteria, which minimize the trace, determinant and largest eigenvalue of the information matrix, respectively. Semide nite programming (SDP) is concerned with optimizing a linear objective function subject to a linear matrix being positive semide nite. Two powerful MATLAB add-ons, SeDuMi and CVX, have been developed to solve SDP problems e ciently. In this paper, we show in detail how to formulate A- and E-optimal design problems as SDP problems and solve them by SeDuMi and CVX. This technique can be used to construct approximate A-optimal and E-optimal designs for all linear and non-linear models with discrete design spaces. The results can also provide guidance to nd optimal designs on continuous design spaces. For one variable polynomial regression models, we solve the A- and E- optimal designs on the continuous design space by using a two-stage procedure. In the rst stage we nd the optimal moments by casting it as an SDP problem and in the second stage we extract the optimal designs from the optimal moments obtained from the rst stage. Unlike E- and A-optimal design problems, the objective function of D-optimal design problem is nonlinear. So D-optimal design problems cannot be reformulated as an SDP. However, it can be cast as a convex problem and solved by an interior point method. In this thesis we give details on how to use the interior point method to solve D-optimal design problems. Finally several numerical examples for A-, D-, and E-optimal designs along with the MATLAB codes are presented. / Graduate

Page generated in 0.0236 seconds