Spelling suggestions: "subject:"eea ece reconstructions"" "subject:"eea ece deconstructions""
1 |
Reconstruction of recent and palaeo sea ice conditions in the Barents SeaNavarro-Rodríguez, Alba January 2014 (has links)
IP25 is a highly branched isoprenoid alkene derived from certain Arctic sea ice diatoms that, when detected in marine sediments, has been used as a proxy for past Arctic sea ice over the last decade. In the current study, the structure of this biomarker was determined following large-scale extraction from sediment material collected from the Canadian Arctic. After purification, the structure of IP25 was confirmed by NMR spectroscopy as being the same as that of a laboratory standard. The purified IP25 was subsequently used to obtain a quantitative (GC-MS) instrumental response factor that could be used to improve the future quantification of IP25 and would help to produce a robust database. IP25, other highly branched isoprenoid (HBI) lipids and some other phytoplanktonic lipids (sterols) were analysed to provide modern and past sediment-based sea ice reconstructions for the Barents Sea. First, a surface sediment study was conducted and biomarker distributions were compared to satellite sea ice records. The occurrence of IP25 was consistent with the presence/absence of seasonal sea ice but there was also evidence of lateral transport of IP25 and other biomarkers in sediments from the southern Barents Sea. In contrast to some previous studies, abundances of IP25, and of those combined with other biomarkers, including sterols, did not show strong quantitative relationships to sea ice concentration. The surface study was used to relate biomarker distributions to recent sea ice and oceanographic conditions and apply this information to long-term sediment records in the eastern and western Barents Sea covering ca. 2 kyr and 11 kyr (Holocene) respectively. IP25 concentrations for the former were found to be very variable and were used to identify the period with maximum sea ice cover occurring from ca. 900 - 400 cal. yr BP where the highest abundances of IP25 and IRD were observed. Similarly, biomarker results from the eastern Barents Sea provided evidence for a dynamic advance of the marginal sea ice zone potentially situated at ca. 78° N (maximum extent) during ca 9.4 – 5.9 cal. kyr BP, to late Holocene and modern day maximum MIZ advance ca. 75° N. Replicate analysis of various biomarkers in individual push-cores collected from a box core obtained from Rijpfjorden (north Svalbard) demonstrated some variability between cores. Variability in individual biomarker concentrations was lowest for HBI lipids and greatest for sterols. These data are consistent with a selective and relatively minor source of the former. In contrast, the somewhat more generic origins of sedimentary sterols likely explain the greater variability in their distributions between cores Finally, the strong abundance relationship between IP25 and a structurally related di-unsaturated HBI (C25:2) was confirmed in all sediments, similar to that found between two tri-unsaturated HBIs, consistent with co-production by certain marine phytoplankton. The progressive use of novel HBIs with two or three degrees of unsaturation (e.g. C25:2 and C25:3) could provide further valuable insights into environmental conditions.
|
2 |
Antarctic Sea Ice Extent Reconstructions Throughout the 20th CenturySleinkofer, Amanda M. 10 September 2021 (has links)
No description available.
|
3 |
Identification of variability in sub-Arctic sea ice conditions during the Younger Dryas and HoloceneCabedo Sanz, Patricia January 2013 (has links)
The presence of the sea ice diatom biomarker IP25 in Arctic marine sediments has been used in previous studies as a proxy for past spring sea ice occurrence and as an indicator of wider palaeoenvironmental conditions for different regions of the Arctic over various timescales. The current study describes a number of analytical and palaeoceanographic developments of the IP25 sea ice biomarker. First, IP25 was extracted and purified from Arctic marine sediments. This enabled the structure of IP25 to be confirmed and enabled instrumental (GC-MS) calibrations to be carried out so that quantitative measurements could be performed with greater accuracy. Second, palaeo sea ice reconstructions based on IP25 and other biomarkers were carried out for a suite of sub-Arctic areas within the Greenland, Norwegian and Barents Seas, each of which represent contrasting oceanographic and environmental settings. Further, an evaluation of some combined biomarker approaches (e.g. the PIP25 and DIP25 indices) for quantifying and/or refining definitions of sea ice conditions was carried out. Temporally, particular emphasis was placed on the characterisation of sea ice conditions during the Younger Dryas and the Holocene. Some comparisons with other proxies (e.g. foraminifera, IRD) were also made. A study of a sediment core from Andfjorden (69.16˚N, 16.25˚E), northern Norway, provided unequivocal evidence for the occurrence of seasonal sea ice conditions during the Younger Dryas. The onset (ca. 12.9 cal. kyr BP) and end (ca. 11.5 cal. kyr BP) of this stadial were especially clear in this location, while in a study from the Kveithola Trough (74.52˚N, 16.29˚E), western Barents Sea, these transitions were less apparent. This was attributed to the presence of colder surface waters and the occurrence of seasonal sea ice both before and after this stadial at higher latitudes. Some regional differences regarding the severity of the sea ice conditions were also observed, although an overall general picture was proposed, with more severe sea ice conditions during the early-mid Younger Dryas and less sea ice observed during the late Younger Dryas. A shift in the climate towards ice-free conditions was recorded in northern Norway during the early Holocene (ca. 11.5 – 7.2 cal. kyr BP). Milder conditions were also observed during the Holocene in the western Barents Sea, with three main climate periods observed. During the early Holocene (ca. 11.7 – 9.5 cal. kyr BP), the position of the spring ice edge was close to the study area which resulted in high productivity during summers. During the mid-late Holocene (ca. 9.5 – 1.6 cal. kyr BP), sea ice was mainly absent due to an increased influence of Atlantic waters and northward movement of the Polar Front. During the last ca. 1.6 cal. kyr BP, sea ice conditions were similar to those of the present day. In addition to the outcomes obtained from the Norwegian-Barents Sea region, comparison of biomarker and other proxy data from 3 short cores from Kangerdlugssuaq Trough (Denmark Strait/SE Greenland) with historical climate observations allowed the development of a model of sea ice conditions which was then tested for longer time-scales. It is suggested that the IP25 in sediments from this region is likely derived from drift ice carried from the Arctic Ocean via the East Greenland Current and that two main sea surface scenarios have existed over the last ca. 150 yr. From ca. AD 1850 – 1910, near perennial sea ice conditions resulted in very low primary productivity, while from ca. AD 1910 – 1986, local sea ice conditions were less severe with increased drift ice and enhanced primary productivity. This two-component model was subsequently developed to accommodate different sea surface conditions that existed during the retreat of the Greenland Ice Sheet during the deglaciation (ca. 16.3 – 10.9 cal. kyr BP).
|
Page generated in 0.1434 seconds