• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predicting shoreline response to wave and sea level trends.

Corbella, Stefano. 31 October 2013 (has links)
In March 2007 the KwaZulu-Natal coastline was devastated by an extreme storm event. There is international concern that such events are associated with climate change. There is evidence of global changes in climate but there is still uncertainty as to whether they are anthropogenic or part of natural decadal (or longer) cycles. The increase in frequency and intensity of extreme storm events will impact on the sediment dynamics of coastlines and the associated risks need to be modelled and quantifed so that they can be included in coastal planning and management. Durban is a coastal city on the east coast of South Africa and has been used as a case study to identify trends in wave parameters and beach profile volumes. The correlation between profile erosion, waves and tides was explored using singular spectral analysis. The dependence between wave parameters was modelled using copulas. The decadal trends were introduced into these models using a nonstationary generalised extreme value distribution. Numerical models (SWAN, SBEACH, XBEACH) were used to transform the statistical model to near shore waves and estimate the associated erosion. The copula model was used to investigate the relationship between multivariate return periods and erosion return periods. Coastal defence options were reviewed and those appropriate for Durban were identifed. This study provides a review of Durban and Richards Bay's 18 years of Waverider data. It presents wave parameter exceedance statistics and wave height return periods for Durban. Durban's wave data showed increasing trends in maximum significant wave heights, peak wave period, storm event frequencies and a trend towards a more southerly mean wave direction. However, only the increase in peak period and wave direction was statistically significant. The trend in wave direction is considered a potential coastal hazard as it has the potential to increase the littoral drift by 1 % per annum. Durban's beach profiles have shown a long term erosion trend which is due to a combination of wave and sea level trends, and a reduction in sediment supply. The reduction in sediment supply from rivers was found to be both anthropogenic and natural. Storm, wave parameter and sea level trends were estimated to contribute more than 75 % to the total long term erosion. It was found that it takes an average of 2 years for a beach to recover to its pre-storm volume. Different types of coastlines recover at different rates and these recovery rates should be considered in risk assessments. A method for estimating future impacts due to storm and sea level trends has been proposed in the form of a non-stationary copula based statistical model. In general a bivariate return period of wave height and duration was found to approximate erosion return periods, while a method for estimating an analogous multivariate storm and erosion return period was developed. Geotextile sand filled containers were found to be a suitable coastal defence as they satisfy social, environmental and political pressure. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2012.
2

The marine geology of the Aliwal Shoal, Scottburgh, South Africa.

Bosman, Charl. 25 November 2013 (has links)
This study represents the first detailed geological, geophysical and geochronological investigation of the continental shelf surrounding the Aliwal Shoal, ~5 km offshore of Scottburgh, in southern KwaZulu-Natal. Mapping of the seafloor geology using geophysics and direct observations from SCUBA diving transects were integrated with the seismic stratigraphy and constrained by new geochronological data. Four seismic stratigraphic units (A to D) were identified and interpreted with the subsequent sequence stratigraphic model consisting of four incompletely preserved stratigraphic sequences separated by three sequence boundaries (SB1 - SB3) comprising complex reworked subaerial unconformity surfaces. Sequence 1 is the deepest, subdivided by a basin-wide marine flooding surface (MFS1) into a lower Campanian (and possible Santonian) TST and an upper Maastrichtian combined regressive systems tract comprising HST/FRST deposits. SB1 follows Sequence 1 and spans most of the Tertiary representing multiple erosional events. Shelf sedimentation resumed during the Late Pliocene to early Pleistocene with deposition of Sequence 2, the shelf-edge wedge, which again was followed by erosion and non-deposition during the high frequency and amplitude Early to Middle Pleistocene sea-level fluctuations resulting in the formation of SB2. Sequence 3 consists of coast-parallel, carbonate cemented aeolianite palaeo-shoreline ridges of various ages overlying Sequence 1 and 2. Sequence 4 unconformably overlies all the earlier sequences and comprises a lower TST component displaying characteristic retrogradational stacking patterns and an upper local HST clinoform component showing progradation and downlapping. Inner and middle shelf TST units constrained between Sequence 3 ridges form thick sediment deposits showing a progression from lagoonal and lower fluvial-estuarine deposits, overlain by foreshore and shoreface sands, documenting the changing depositional environments in response to a sea-level transgression. Laterally, in the absence if Sequence 3 ridges, TST sediments comprise only a thin transgressive sand sheet. The upper HST component comprises a prograding shore-attached subaqueous-delta clinoform sediment deposit, the Mkomazi Subaqueous-Delta Clinoform (MSDC) which evolved in four stages. An initialization and progradation stage (Stage 1) (9.5 to 8.4 ka cal. B.P.) was interrupted by retrogradation (Stage 2) and backstepping of the system due to rapid sea-level rise between 8.4 to 8.2 ka cal B.P. Stage 2 backstepping of the clinoform controlled the subsequent overlying topset morphologies resulting in later stages inheriting a stepped appearance upon which shoreface-connected ridges (SCR’s) are developed. Stages 3 (8.2 to 7.5 ka cal. B.P.) and 4 (7.5 to 0 ka cal. B.P) show a change from ‘proximal’ topset aggradation to ‘distal’ foreset progradational downlap, linked to a change in the dominant sedimentary transport mechanism from aggradational alongshore to progradational cross-shore related to variations in accommodation space and the rate of sediment supply. Morphologically the MSDC is characteristic of sediment input onto a high energy storm-dominated continental shelf where oceanographic processes are responsible for its northward directed asymmetry in plan-view, for the lack of a well defined bottomset and for the re-organisation of its topset into very large SCR’s. The SCR’s are 1 - 6 m in height, spaced 500 to >1350 m apart and vary from 3 km to >8 km in length, attached on their shoreward portions to the shoreface between depths of -10 m to -15 m (average at -13 m) and traceable to depths exceeding -50 m, although the majority occur on the inner shelf between -20 m to -30 m. Several individual crests can be identified forming a giant shoreface-connected sand ridge field with a sigmoidal pattern in plan-view postulated to be a surficial expression of the subjacent retrogradational phase (MSDC Stage 2). SCR’s development occurred in two stages. Stage 1 involved deposition of sediment on the shoreface and ridge initiation during the MSDC Stage 2 retrogradational event. Sediment was reworked during sea-level rise generating clinoforms with proximal along-shore aggradation and distal across-shore progradation. This occurred during the last post-glacial sea-level rise from ca. 8.4 ka cal. B.P. SCR Stage 2 represents modern maintenance of the SCR system which is continually modified and maintained by shelf processes and consists of two physical states. State 1 considers SCR maintenance during fair-weather conditions when transverse ridge migration is dominant and driven by the north-easterly flowing counter current shelf circulation. State 2 considers SCR development during storm conditions when longitudinal ridge growth is suggested to occur as a result of storm return flows. Following the storm, the regional coast-parallel current system is restored and the fair-weather state then moulds the SCRs into a transverse bedform. Deposition on the MSDC is ongoing on a continental shelf that is still in a transgressive regime. The exposed seafloor geology comprises late Pleistocene to Holocene aeolianite and beachrock lithologies, deposited as coastal barrier and transgressive shoreface depositional systems. Extensive seafloor sampling was combined with a multi-method geochronological programme, involving the U-series, C14 and optically stimulated luminescence (OSL) to constrain the evolution of the aeolianite and beachrock complex. The Aliwal Shoal Sequence 3 ridge comprises three distinct aeolianite units (A1 to A3) which represent different types of dune morphologies deposited during the climatic and associated sea-level fluctuations of MIS 5. Units A1 and A2 deposited during the MIS 6/5e (~134 to ~127 ka cal. B.P.) transgression represent contemporaneous evolution of a coastal barrier system which consisted of two different dune forms associated with a back-barrier estuarine or lagoonal system. Unit A1 most likely originated as a longitudinal coastal dune whilst Unit A2 comprised a compound parabolic dune system that migrated into the back-barrier area across an estuary mouth/tidal inlet of the back-barrier system. The coastal barrier-dune configuration established by Unit A1 and A2 was most likely re-established during similar subsequent MIS 5 sea-level stands which during MIS 5c/b resulting in the formation of the back-barrier dune system of Unit A3. Palaeoclimatic inferences from Units A1 and A2 aeolianite wind vectors indicate a change from cooler post-glacial climates (lower Unit A1) to warmer interglacial-like conditions more similar to the present (upper Unit A1 and Unit A2). Unit A3 palaeowind vector data show variability interpreted to be related to global MIS 5c climatic instability and fluctuations. For Units A1, A2 and A3 pervasive early meteoric low-magnesium calcite (LMC) cementation followed shortly after deposition protecting the dune cores from erosion during subsequent sea-level fluctuations. Sea-spray induced vadose cementation in Units A1 and A2 may have been a key factor in stabilising dune sediment before later phreatic meteoric cementation. The final preserved Late Pleistocene depositional event in the study area was that of the storm deposit of beachrock Unit B5. Induration followed shortly after deposition by marine vadose high-magnesium calcite (HMC) cementation. Following deposition and lithification, Units A1, A2, A3 and B5 underwent a period of cement erosion associated with decementation and increased porosity due to either 1) groundwater table fluctuations related to the high frequency MIS 5 sea-level fluctuations and/or 2) carbonate solution due to complete subaerial exposure related to the overall MIS 4 - 2 sea-level depression towards the LGM lowstand. In addition to the decementation and porosity development Unit B5 also experienced inversion of the original unstable HMC cement to LMC. During MIS 4 to 2 the Aliwal shelf comprised an interfluve area which was characterised by subaerial exposure, fluvial incision of coast-parallel tributary river systems and general sediment starvation. Beachrock Units B1 to B4 were deposited in the intertidal to back-beach environments and subsequently rapidly cemented by marine phreatic carbonate cements comprising either aragonite or HMC. Unit B1 was most likely deposited at 10.8 ka cal. B.P., B2 at 10.2 ka cal. B.P, B3 at 9.8 ka cal. B.P and B4 <9.8 ka cal. B.P. thereby indicating sequential formation during the meltwater pulse 1b (MWP-1b) interval of the last deglacial sea-level rise. Unit B3 marks the change from a log-spiral bay coastal configuration established by Units B1 and B2 to a linear coastline orientation controlled by the trend of the pre-existing aeolianite units. This change in the morphology of the coastline is also documented by the shape of the underlying transgressive ravinement surface (reflector TRS, Sequence 4) which again was controlled by the subjacent sedimentary basin fill architecture and subsequent transgressive shoreline trajectory (Sequence 4). Sea-level rose at an average rate of 67 cm/100 years from B1 to B2 and 86 cm/100 years from B2 to B2 indicating an acceleration in the rate of sea-level rise supporting enhanced rates of sea-level rise during the MWP-1b interval which also seemed to have altered the coastal configuration and resulted in the closure of the southern outlet of the back-barrier estuarine system. Two cycles of initial aragonite followed by later HMC cement are tentatively linked to two marine flooding events related to different pulses of enhanced rates of sea-level rise during MWP-1b which are considered responsible for significant changes in the marine carbon reservoir ages. Comparisons of the U-series, C14 and optically stimulated luminescence (OSL) methods have shown OSL to be the most reliable method applied to dating submerged aeolianites and beachrocks. OSL not only provides the depositional age of the sediment but also does not suffer from open system behaviour, such as marine reservoir changes and contamination. Acoustic classification of the unconsolidated sediment samples resulted in the demarcation of 3 major acoustic facies, C to E, interpreted with sample analyses as quartzose shelf sand (C), reef-associated bioclastic-rich sand (D) and an unconsolidated lag and debris deposit (E). Grain size distribution patterns of the unconsolidated seafloor sediments indicate that the SCR system delivers fine and medium sand to the inner and middle shelf and imparts a general N-S trending pattern to the gravel and sand fractions. In addition grain size distributions support selective erosion of the seaward flank of the Sandridge with the remobilised sediment deposited in the Basin as low amplitude bedforms over the Facies E lag and debris pavement. The mud fraction is interpreted to be deposited by gravity settling from buoyant mud-rich plumes generated by river discharge. Integration of acoustic mapping, field observations and sample analyses indicate that the present distribution of the unconsolidated sediment is the result of a highly variable distribution of modern and palimpsest sediments which are continually redistributed and reworked by a complex pattern of bottom currents generated by the interaction of opposing oceanographic and swell driven circulation patterns. / Thesis (Ph.D.)-University of KwaZulu-Natal, Westville, 2012.

Page generated in 0.3864 seconds