• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Radiative transfer modelling for sun glint correction in marine satellite imagery

Kay, Susan Barbara January 2011 (has links)
Remote sensing is a powerful tool for studying the marine environment; however, many images are contaminated by sun glint, the specular reflection of light from the water surface. Improved radiative transfer modelling could lead to better methods for estimating and correcting sunglint. This thesis explores the effect of using detailed numerical models of the sea surface when investigating the transfer of light through the atmosphere-ocean system. New numerical realisations that model both the shape and slope of the sea surface have been created; these contrast with existing radiative transfer models, where the air-water interface has slope but not elevation. Surface realisations including features on a scale from 3 mm to 200 m were created by a Fourier synthesis method, using up to date spectra of the wind-blown sea surface. The surfaces had mean square slopes and elevation variances in line with those of observed seas, for wind speeds up to 15 m/s. Ray-tracing using the new surfaces gave estimates of reflected radiance that were similar to those made using slope statistics methods, but significantly different in 41% of cases tested. The mean difference in the reflected radiance at these points was 19%, median 7%. Elevation-based surfaces give increased sideways scattering and reduced forward scattering of light incident on the sea surface. The elevation-based models have been applied to estimate pixel-pixel variation in ocean colour imagery and to simulate scenes viewed by three types of sensor. The simulations correctly estimated the size and position of the glint zone. Simulations of two ocean colour images gave a lower peak reflectance than the original values, but higher reflectance at the edge of the glint zone. The use of the simulation to test glint correction methods has been demonstrated, as have global Monte Carlo techniques for investigating sensitivity and uncertainty in sun glint correction. This work has shown that elevation-based sea surface models can be created and tested using readily-available computer hardware. The new model can be used to simulate glint in a variety of situations, giving a tool for testing glint correction methods. It could also be used for glint correction directly, by predicting the level of sun glint in a given set of conditions.
2

Spatial Coherence in a Shallow Water Waveguide

Yang, Jie 21 February 2007 (has links)
In shallow water environments, sound propagation experiences multiple interactions with the surface/bottom interfaces, with hydrodynamic disturbances such as internal waves, and with tides and fronts. It is thus very difficult to make satisfactory predictions of sound propagation in shallow water. Given that many of the ocean characteristics can be modeled as stochastic processes, the statistical measure, spatial coherence, is consequently an important quantity. Spatial coherence provides valuable information for array performance predictions. However, for the case of long-range, low frequency propagation, studies of spatial coherence influenced by various environmental parameters are limited insofar as having the appropriate environmental data with which to model and interpret the results. The comprehensive Asian Seas International Experiment 2001 (ASIAEX01) examined acoustic propagation and scattering in shallow water. Environmental oceanographic data were taken simultaneously with the acoustic data. ASIAEX01 provided a unique data set which enabled separate study of the characteristics of the oceanographic features and their influence on long range sound propagation. In this thesis, the environmental descriptors considered include sediment sound speed and attenuation, background internal waves, episodic non-linear internal waves, and air-sea interface conditions. Using this environmental data, the acoustic data are analyzed to show the characteristics of spatial coherence in a shallow water waveguide. It is shown that spatial coherence can be used as an inversion parameter to extract geoacoustic information for the seabed. Environmental phenomena including internal waves and wind-generated surface waves are also studied. The spatial and temporal variations in the sound field induced by them are presented. In addition, a tank experiment is presented which simulates propagation in a shallow water waveguide over a short range. Based on the data model comparison results, the model proposed here is effective in addressing the major environmental effects on sound propagation in shallow water.

Page generated in 0.0749 seconds