• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Axial organ : its potential role in echnoid immunity

Larson, Maureen Kupke 04 March 1993 (has links)
The echinoderm axial organ is located centrally, at the meeting point of the animals' "circulatory" systems. This, and its unusual histology, have prompted the implication of a number of different functions for the organ, including circulation, excretion and host defense. None of these have been definitively proven. Claims that starfish axial organ cells respond to antigen in an adaptive manner, resembling the vertebrate antibody response, also remain unconfirmed. The purpose of the work on Strongylocentrotus purpuratus presented in this thesis was to independently test the hypothesis that the cells of the axial organ respond to antigenic challenge. To determine if the cells are modified quantitatively following antigen encounter, the cell types of the organ were first classified according to morphological characteristics. Cell subpopulations were then monitored quantitatively after in vivo exposure to several types of antigens. Axial organ cells were also analyzed for qualitative changes; cells from antigen exposed urchins were assayed for immunocytoadherence to antigen-coated sheep erythrocytes. The coelomic fluids from the same animals were tested for antigen-specific binding molecules using ELISA assays. Immunocytoadherence and ELISA assays were validated with cells and sera from trout similarly exposed to antigen and control treatments. Eight subpopulations of axial organ cells were identified. Four of the cells types resemble cells found in the coelomic fluid. A possible precursor cell to the red spherule cell was found to be a member of the axial organ cell population. Changes in the axial organ cell subpopulations after antigen exposure were not significant, regardless of the type of antigen, exposure method or sample time. Cells of the axial organs from TNP-exposed urchins did not bind TNP-SRBC's, and the hemagglutination observed was neither TNP-inhibitable, nor dependent on previous expoure to the TNP antigen. Coelomic fluids from several urchins bound TNP to a greater extent than BSA, but the frequency of binding among urchins was not dependent on their prior treatment. Titrational analysis of one set of urchin coelomic fluids against the hapten, TNP, the carrier, LPS, or an unrelated protein, BSA, revealed identical binding curves with each molecule. This, in addition to a higher titer of binding molecules in the control animals compared to antigen-injected animals, led to the conclusion that the response was nonspecific. The work presented in this thesis does not support the hypotheses that the urchin axial organ cells respond to antigenic challenge either by a modification in cell types present in the organ, or by the production of cell surface or secreted antigen-specific binding molecules. / Graduation date: 1993
2

Structure et rôle du caecum gastrique des échinides détritivores: étude particulière d'Echinocardium cordatum, Echinoidea: Spatangoida / Structure and role of the gastric caecum in deposit-feeding echinoids, Echinoidea: Spatangoida, Echinocardium cordatum: a case study

Rolet, Gauthier 14 September 2012 (has links)
Les spatangoïdes (échinides détritivores fouisseurs) possèdent un volumineux caecum qui s’ouvre au début de l’estomac, le caecum gastrique. Ce caecum est ‘distendu’ :il est toujours gorgé d’un liquide incolore dont la nature est inconnue. Les sédiments ingérés par ces oursins et qui occupent le reste du tube digestif, ne pénètrent jamais dans le caecum. La fonction du caecum gastrique n’est pas claire: il sécréterait des enzymes dans l’estomac, serait un site d’absorption, ou encore abriterait une microflore cellulolytique. En prenant pour modèle l’un des échinides fouisseurs les plus étudiés, Echinocardium cordatum, ce travail tente d’élucider le rôle du caecum gastrique, et s’intéresse plus particulièrement à l’étude de son contenu.<p>Les résultats indiquent que le caecum gastrique d’E. cordatum contient de l’eau de mer. L’entrée d’eau de mer dans le caecum a été visualisée en la colorant et des caractéristiques communes au liquide caecal et à l’eau de mer environnante ont été observées: une même osmolarité, les mêmes particules détritiques en suspension et les mêmes communautés bactériennes. Le caecum gastrique contient de la matière organique en suspension (détritus, bactéries transitoires); il est également absorbant. Ses capacités d’absorption ont été comparées à celles de l’estomac et de l’intestin grâce à un dispositif expérimental particulier :les chambres de Ussing. Les résultats ont montré que les entérocytes du caecum et de l’intestin participent davantage au transfert de glucose vers la cavité coelomique que ceux de l’estomac.<p>Un schéma de la circulation de l’eau de mer dans le tube digestif est proposé. L’eau de mer qui circule à la surface du corps de l’oursin et qui provient de la surface des sédiments atteint la cavité buccale, une circulation entretenue par la ciliature des clavules (piquants ciliés). Le péristaltisme de l’œsophage et celui du siphon assurent l’entrée d’eau de mer dans le tube digestif. Une partie de cette eau entre dans le siphon qui l’amène dans l’intestin d’où elle est entraînée à l’extérieur avec le bol alimentaire. L’eau de mer qui n’est pas prélevée par le siphon peut atteindre l’entrée du caecum gastrique. Un système de gouttières a été mis en évidence à l’entrée du caecum. Il s’étend de l’estomac au début du caecum où les gouttières sont flagellées, et acheminerait l’eau de mer dans la lumière caecale. Les différences de pression osmotique entre le liquide caecal et le liquide cœlomique permettraient le transfert d’eau depuis le caecum vers la cavité cœlomique. Une quantité d’eau similaire devrait alors être éliminée de la cavité coelomique. Cette élimination semble se faire dans le caecum intestinal, l’eau serait ensuite éliminée par l’anus. <p>D’après nos observations, le caecum gastrique pourrait être le site d’une digestion et d’une absorption de la matière organique détritique de l’eau de mer. Si cette hypothèse est exacte, E. cordatum serait alors un détritivore particulièrement ‘complet’, digérant non seulement la fraction détritique des sédiments mais aussi celle en suspension dans l’eau de mer. Ce modèle pourrait correspondre à tous les échinides atélostomes (spatangoïdes & holastéroïdes) qui, outre la présence d’un caecum gastrique bien développé et rempli de liquide, ont en commun d’être fouisseurs, et d’entretenir une circulation d’eau dans leur terrier grâce à des clavules groupés en fascioles.<p><p>Spatangoids (burrowed deposit-feeding echinoids) have a large caecum, which opens at the beginning of the stomach, the gastric caecum. It is always swollen, filled with a colorless liquid whose nature is unknown; sediments ingested by sea urchins fill the rest of the digestive tract but never enter in the caecum. The function of the gastric caecum is unclear: it would secrete enzymes in the stomach, would be a site of absorption, and/or would harbor a cellulolytic microflora. By taking as model one of the most studied burrowing echinoids, Echinocardium cordatum, this study attempts to highlight the role of the gastric caecum by examining its contents.<p>Results indicate that the gastric caecum of E. cordatum contains seawater. Seawater inflow into the caecum was visualized using dye. The caecal liquid and the surrounding seawater were demonstrated to have similar characteristics: the same osmolarity, the same suspended particles and the same bacterial communities. The gastric caecum contains suspended organic matter (detritus, transient bacteria) and is also involved in absorption. Absorption and transfer of glucose were compared between the gastric caecum, the stomach and the intestine, using a particular experimental device: the Ussing chamber. The results showed that the enterocytes of the caecum and of the intestine were more involved in glucose transfer to the coelomic cavity than those of the stomach.<p>Seawater circulation in the digestive tube is tentatively described. Seawater currents along the body of the sea urchin originate from the sediment surface and reach the mouth; this circulation is generated by ciliae of specialized spines, the clavules. Peristalsis of the esophagus and of the siphon induces seawater to enter the mouth and to move along the digestive tube. Part of this water enters the siphon, being then transported to the intestine, and driven outside via the anus. Seawater that has not been taken by the siphon can reach the opening of the gastric caecum. A system of grooves occurring at the entrance of the caecum extends from the anterior stomach to the proximal part of the caecum where it is flagellated; these grooves could transport seawater in the caecal lumen. Differences in osmotic pressures between the caecal liquid and the coelomic liquid could transfer water from the caecum to the coelomic cavity. A similar uptake of water could then be removed from the coelom through the wall of the intestinal caecum, and water be eliminated from the digestive tube via the anus.<p>According to our observations, the gastric caecum could be specialized in digestion and absorption of detrital organic matter occurring in seawater. If this hypothesis is correct, E. cordatum would be a deposit-feeder feeding both on the detritus fraction of the sediments and on that of seawater. This model could fit all Atelostomata echinoids (spatangoids & holasteroids) which, besides the presence of a well-developed gastric caecum filled with liquid, have in common the burrowing behaviour, and the maintenance of seawater currents in their burrows owing to the action of clavules grouped into fascioles.<p><p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0543 seconds