• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Corrosion rate of steel reinforcement in concrete in seawater and influence of concrete crack width

Chang, Zhen-Tian, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2007 (has links)
This thesis reports a research of the corrosion mechanism and corrosion rate of steel reinforcement in concrete. Experimental results are presented to compare the corrosion behaviours of steel reinforcement in two blended-cement concretes in seawater. The experimental program included a study of the influence of crack width on macrocell corrosion, an investigation of the procedure for the determination of polarisation curves of steel in concrete and, an evaluation of the corrosion rate of steel in concrete and the influence of crack width as determined by a new polarisation curve analysis. A mechanism is proposed to interpret the different influences, in both the short and long term, of concrete crack width on the macrocell corrosion rate. This mechanism is based on the finding that the corrosion-spread phenomenon is caused by polarisation effects. An oxygen-depletion mechanism is also proposed to explain the much lower macrocell corrosion rate in the slag cement concrete than that in the flyash cement concrete. The procedure for polarisation testing of steel in concrete is found to be critical to obtaining correct polarisation curves. A twotest procedure is verified to be an appropriate procedure and used in this investigation. Experimental polarisation curves of steel in concrete are found to be very different to those expressed by the kinetic Butler-Volmer equation and, this is considered to be a result of the influence of the passive film on the steel surface in concrete. An empirical polarisation formula is developed and its interpretation is based on the postulation of two parallel kinetic processes occurring at the steel/passive-film/concrete interface; one is the active corrosion process and the other is the film growth/dissolution process. The formula is used to model experimental polarisation curves of steel in concrete through curvefitting analyses. Good curve-fitting results are obtained between the polarisation test curves and model curves. The results are used for evaluation of the corrosion rate and Tafel behaviours of steel in the two concretes and for assessment of the influence of crack width on the corrosion rate within the crack zone.
2

Corrosion rate of steel reinforcement in concrete in seawater and influence of concrete crack width

Chang, Zhen-Tian, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2007 (has links)
This thesis reports a research of the corrosion mechanism and corrosion rate of steel reinforcement in concrete. Experimental results are presented to compare the corrosion behaviours of steel reinforcement in two blended-cement concretes in seawater. The experimental program included a study of the influence of crack width on macrocell corrosion, an investigation of the procedure for the determination of polarisation curves of steel in concrete and, an evaluation of the corrosion rate of steel in concrete and the influence of crack width as determined by a new polarisation curve analysis. A mechanism is proposed to interpret the different influences, in both the short and long term, of concrete crack width on the macrocell corrosion rate. This mechanism is based on the finding that the corrosion-spread phenomenon is caused by polarisation effects. An oxygen-depletion mechanism is also proposed to explain the much lower macrocell corrosion rate in the slag cement concrete than that in the flyash cement concrete. The procedure for polarisation testing of steel in concrete is found to be critical to obtaining correct polarisation curves. A twotest procedure is verified to be an appropriate procedure and used in this investigation. Experimental polarisation curves of steel in concrete are found to be very different to those expressed by the kinetic Butler-Volmer equation and, this is considered to be a result of the influence of the passive film on the steel surface in concrete. An empirical polarisation formula is developed and its interpretation is based on the postulation of two parallel kinetic processes occurring at the steel/passive-film/concrete interface; one is the active corrosion process and the other is the film growth/dissolution process. The formula is used to model experimental polarisation curves of steel in concrete through curvefitting analyses. Good curve-fitting results are obtained between the polarisation test curves and model curves. The results are used for evaluation of the corrosion rate and Tafel behaviours of steel in the two concretes and for assessment of the influence of crack width on the corrosion rate within the crack zone.
3

The development of embedded sensors to assess the fatigue response of adhesive joints in marine environments

McGovern, Scott. January 2007 (has links)
Thesis (Ph.D.)--University of Wollongong, 2007. / Typescript. Includes bibliographical references.
4

Design of cathodic protection using BEM for components of the piilot ocean energy system

Unknown Date (has links)
The Center for Ocean Energy Technology at Florida Atlantic University is developing an ocean energy turbine system to investigate the feasibility of harnessing Florida's Gulf Stream current kinetic energy and transforming it into a usable form. The turbine system has components which are prone to marine corrosion given the materials they are made of and to the harsh environment they will be exposed to. This study assumes a two-part system composed of a coating system acting as a barrier and sacrificial anode cathodic protection which polarizes the metal structures to a potential value where corrosion is significantly reduced. Several configurations (varying in anode quantity, size and location) were considered in order to cathodically protect the structures with various coating qualities (poor, good and excellent). These cases were modeled and simulated via Boundary Element Method software and analyzed so as to assess the most appropriate design. / by Nicolas Gantiva. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
5

Investigation d’alliages à base de titane de types béta-métastables pour applications marines : cas particulier d’un winch innovant / Investigation of metastable beta titanium-based alloys for marine applications : the case of an innovatong winch

Dupuis, Jennifer 09 December 2014 (has links)
Les alliages de titane sont utilisés dans de nombreux domaines tels que l’aéronautique et l’aérospatial, l’industrie automobile, les plateformes offshore et d’autres applications telles que le biomédical et l’environnement marin. Le choix d’utiliser des alliages de titane repose sur le fait que ces alliages disposent d’un excellent ratio entre la résistance mécanique et la densité ainsi qu’une excellente résistance à la corrosion. Afin d’être employés pour une application marine telle que celle d’un winch innovant, nous avons choisi de travailler sur trois nuances d’alliages de titane β-métastables que sont les alliages Ti-6.8Mo-4.5Fe- 1.5Al, Ti-15Mo-2.7Nb-3Al-0.2Si et Ti-5Al-5Mo-5V-3Cr. Le milieu marin est une atmosphère qui expose les matériaux à des conditions telles qu’elles peuvent générer leur destruction. Divers moyens de dégradation existent. Il était donc intéressant d’évaluer la résistance à la corrosion de ces alliages et de chercher à les protéger contre la corrosion. Le coeur de cette étude repose sur la sélection des alliages de titane susceptibles de répondre au cahier des charges du winch innovant. Des traitements thermomécaniques ont d’abord été définis, puis les alliages ont été caractérisés métallurgiquement et mécaniquement. Ces caractérisations ont permis de connaître les propriétés mécaniques des alliages et de sélectionner les alliages potentiellement employables au sein du winch. Puis des essais de corrosion galvaniques ont été menés via la mesure de différences de potentiel entre les alliages de titane traités et d’autres matériaux susceptibles d’être employé au sein du winch tels que des aciers inoxydables, des alliages d’aluminium et des laitons au plomb. Puis, afin d’évaluer le comportement en corrosion marine du film passif des alliages de titane, des essais de corrosion électrochimiques ont été faits à l’aide d’un dispositif à trois électrodes dans des électrolytes de type chlorure de sodium et eau de mer naturelle. Ainsi des mesures de potentiel libre et de voltammétrie cyclique ont été menées. Le point faible des alliages de titane est le comportement en frottement. Dans ce cas, afin de réduire le coefficient de frottement de ces alliages, il est souvent nécessaire d’effectuer un traitement de surface. Dans cette étude, un traitement thermochimique de nitruration gazeuse a donc été fait sur l’alliage de titane le plus récemment développé parmi les nuances étudiées à savoir le Ti-5Al-5Mo-5V-3Cr. Cet alliage ainsi traité a été caractérisé de façon identique aux alliages traités thermomécaniquement. L’ensemble des essais menés au cours de cette thèse ont permis de déterminer quels alliages de titane parmi ceux étudiés seraient les plus susceptibles d’être employés au sein du winch innovant. / Titanium alloys are used in numerous fields as aerospace industry, automotive industry, off-shore industry, and, in several applications such as medical and marine applications. This is due to their good properties like high mechanical strength, low density and excellent corrosion resistance. In order to be used for an innovating winch and so in a marine environment, we have chosen to study three β-metastable titanium alloys which are Ti-6.8Mo-4.5Fe-1.5Al, Ti-15Mo-2.7Nb-3Al-0.2Si and Ti-5Al-5Mo-5V-3Cr. In marine environment, materials are exposed to tough conditions which can generate their destruction. Several modes of degradation exist. It is so interesting to evaluate the corrosion resistance of these alloys and to search their best corrosion protection. So, the heart of the study is to select titanium alloys to meet the specifications of the innovating winch. At first, we defined thermomechanical treatments for those titanium alloys and then these materials were characterized to know their mechanical and metallurgical properties. These tests allowed us to have a well knowledge of mechanical properties of these alloys and to choose which alloys can be employed in a winch. Then, galvanic corrosion tests were made in nitric acid, sodium chloride and sodium hydroxide. We measured potential differences between our treated titanium alloys and other materials which may be used in a winch such as stainless steels, aluminum alloys and leaded brass. Then, in order to evaluate the behavior of the passive film in marine environment of titanium alloys, electrochemical corrosion tests were conducted using a three-electrode method in sodium chloride and natural seawater electrolytes. So, free potential and cyclic voltammetry measurements were conducted. The flaw of titanium alloys is their low friction coefficient. So in order to improve the coefficient of friction of titanium alloys it is useful to do a surface treatment. In this study, a gaseous nitriding thermochemical treatment was done for the most recent developed alloy among the three studied nuances, which is Ti-5Al-5Mo-5V-3Cr. Then this treated alloy was characterized too similarly to the three thermomechanical treated titanium alloys. All of tests we led allowed us to know which titanium alloys with which thermomechanical and surface treatments may be used for the innovating winch.
6

Effect of a Simulated Butterfly Valve on the Erosion-Corrosion Rate of Nickel Aluminum Bronze Alloys in Highly Turbulent Seawater

Taylor, Ryan Chandler 29 June 2018 (has links)
Nickel aluminum bronze (NAB) alloys are used in naval and maritime applications for their excellent corrosion resistance under the influence of seawater. One application involves the use of a NAB butterfly valve within a NAB fluid line to control fluid flow of seawater. Due to the chaotic environment, the corrosion rate of the NAB tubing downstream from the valve increases significantly. The disc angle at which the valve alters fluid flow causes an increase in the fluid velocity and an increase in the turbulence produced on the downstream side of the valve. These fluid conditions contribute to the increase in the corrosion rate of the NAB piping downstream from the valve. This thesis aims to characterize how the change in the disc angle of the butterfly valve causes a change in the erosion-corrosion rate of NAB downstream from the valve. A butterfly valve is simulated using orifice plates of varying diameters to mimic flow conditions at different disc angles. An orifice plate is a simple device with a hole in its center that is designed to restrict fluid flow across a fluid line. Under the same hydrodynamic conditions, the orifice produces nearly the exact same flow coefficients as the valve. At a volumetric flowrate of 0.00757 m^3/s a total of eight locations found along the liquid/metal interface produced pitting sites. The average passivation layer thickness is also measured. / Master of Science
7

Cerium chloride inhibition for high strength low alloy steel exposed to sulphide polluted seawater

Coimbatore Dhandayuth, Venkatesh January 2008 (has links)
[Truncated abstract] Corrosion of steel structures caused by sulphide is a common engineering problem encountered by many industries, such as the petroleum, chemical processing, mining and mineral processing industries. The control of sulphide corrosion is still a controversial topic among corrosion engineers. There is an absence of guideline for a reliable acceptable limit of sulphide level in service and each processing industry has its own empirical values. Selection of inhibitors in the sulphide environment depends on laboratory testing before its actual application in pipelines and reaction vessels. Many investigators have postulated the corrosion mechanisms due to sulphide based on operating envelopes such as pH, chloride, manganese, hydrogen sulphide, sulphate reducing bacteria levels and inhibitor concentration. It is recommended in the literature that the batch dosing of inhibitor and biocide needs to be evaluated in regards to sulphide reducing bacteria (SRB) level, which may produce sulphide concentrations up to 2000 ppm. Although sulphide scale formation may protect the base metal by providing a physical barrier, the detrimental effects of sulphide are often inevitable, such as stress corrosion cracking, hydrogen embrittlement, etc. Currently, there are many chemicals that are used as inhibitors to prevent corrosion by scavenging the sulphide from the environment. Cerium, a rare-earth element, is not used as inhibitor in the sulphide environment. Also, there are no previous research findings on the effects of compounds of rare-earth metals, such as cerium chloride (CeCl3), in sulphide environment. This research examines the corrosion behaviour of 0.4Mo-0.8Cr steel, a High Strength Low Alloy (HSLA) steel, in sulphide-polluted artificial seawater with the addition of CeCl3 and glutaraldehyde. ... It is postulated that the moderate inhibiting effect of CeCl3 is due to the scavenging effect thereby forming Ce2S3 complex. Further reaction of sulphide with steel resulted in ferrous sulphide, leading to an increased corrosion rate. It is also concluded that the CeCl3 interferes with both anodic and cathodic reactions in deaerated conditions. Addition of glutaraldehyde in the sulphide-polluted seawater was found to decrease the corrosion rate. According to the electrochemical measurements conducted, the concurrent addition of glutaraldehyde and CeCl3 appeared to have an added effect on reducing the corrosion of the steel, as evidenced by the increase of the open circuit potential during the short-term testing. From the weight loss measurements after 60 days, sulphide pollution in deaerated seawater was found to increase corrosion rate. This is attributed to the increase of sulphide activity whereby continual dissolution of steel was encountered. From the weight loss tests, it was found that the addition of CeCl3 and glutaraldehyde reduced the corrosion rate of the steel in the solutions containing 0-10 ppm sulphide. There is no noticeable corrosion rate decrease for the solution containing 100 ppm sulphide. The added effect of CeCl3 and glutaraldehyde to the SRB medium has resulted in lower corrosion rates. Further detailed experimentation is required to elucidate the corrosion reduction mechanism in glutaraldehyde-containing environments.

Page generated in 0.0965 seconds