Spelling suggestions: "subject:"econdary atomization"" "subject:"econdary tomization""
1 |
DIAMETERS AND VELOCITIES FOR CHARGED LIQUID DROPS UNDERGOING AERODYNAMIC BREAKUPZe Yang (6611486) 15 May 2019 (has links)
<p>The sizes and velocities of fragments resulting from the aerodynamic
breakup of charged drops are reported here.
Measurements were made using digital inline holography (DIH). Highly and
moderate conductive liquid droplets are used. Uncertainty of parameters is
discussed. Finally, a discussion on the
applied potential used for possible fragment charge-to-mass ratio charge is
presented.</p>
|
2 |
Analysis of Droplet Impact on a Liquid PoolRadhika Arvind Bhopatkar (9012413) 25 June 2020 (has links)
<p>Secondary
atomization is very important in applications like IC engine and aircraft
engine performance, agricultural sprays, and inkjet printing to name a few. In
case of IC engines and aircraft engines, a good understanding of the modes of
secondary atomization and the resultant drop size can contribute to improving
the fuel injection and hence the efficiency of the engine. Similarly, with the
help of appropriate secondary atomization desired agro-spray quality, ink usage
and print quality can be achieved which would optimize the usage of chemicals
and ink respectively and avoid any harmful effects on the environment.</p>
<p> </p>
<p>One of
the reasons for secondary atomization that occurs very often in most of the
spray applications is the drop impact on a solid or liquid surface. Especially
it is cardinal to understand the impact of a drop on a liquid film since even
in case of impact of liquid drops on a solid surface ultimately the drops that
are injected at a later time are going have a target surface as a thin liquid
film on the solid base due to the accumulation of the previously injected
drops. Analysis of drop impact on a liquid film with non-dimensional thickness
ranging from 0.1 to 1 has been done thoroughly before (Cossali <i>et al.,</i> 2004, Vander Waal <i>et al.,</i>
2006, Moreira <i>et al.,</i> 2010), however,
analysis of drop impact on a liquid film with non-dimensional thickness greater
than 1 is still in a rudimentary stage. This work focuses on determining the
probability density functions for the secondary drop sizes for drops produced
in case of drop impact on a liquid film while varying the h/d ratio beyond 1. The
experimental set-up used to study drop impact includes a droplet generator and
DIH system as mentioned in, Yao <i>et al.</i>
(2017). The DIH set-up includes a CW laser, spatial filter, beam expander and a
collimator as adapted from Guildenbecher <i>et
al.</i> (2016). The height of drop impact is varied to vary the impact <i>We</i>,
by adjusting the syringe height. Three fluids- DI-Water, ethanol and glycerol
are tested for examining the effect of viscosity on the resultant drop sizes. Results
are plotted with respect to viscosity, impact <i>We</i> and the non-dimensional
film thickness, as the fragmentation of drops is directly associated to these
parameters. Results indicate that majority of the secondary droplets lie in the
size range of 25 µm to 50 µm. It is also observed that the tendency of
secondary atomization from crown splashing increases with the increase in <i>We</i>
and decreases with increase in <i>Oh.</i></p>
|
3 |
CHARACTERIZATION OF SECONDARY ATOMIZATION AT HIGH OHNESORGE NUMBERSVishnu Radhakrishna (5930801) 16 January 2019 (has links)
<p>A droplet subjected to external
aerodynamic disturbances disintegrates into smaller droplets and is known as
secondary atomization. Droplet breakup has been studied for low Ohnesorge (<b><i>Oh
< </i></b>0.1) numbers and good agreement has been seen amongst researchers.
However, when it comes to cases with high the <b><i>Oh</i></b> number, i.e.
atomization where the influence of viscosity is significant, very little data
is available in the literature and poor agreement is seen amongst researchers. </p>
<p> </p>
<p>This thesis presents a complete
analysis of the modes of deformation and breakup exhibited by a droplet
subjected to continuous air flow. New modes of breakup have been introduced and
an intermediate case with no droplet fragmentation has been discovered.
Further, results are presented for droplet size-velocity distributions. In
addition, Digital in-line holography (DIH) was utilized to quantify the
size-velocity pdfs using a hybrid algorithm. Finally, particle image
velocimetry (PIV) was employed to characterize the air flow in the unique cases
where drops exhibited no breakup and cases with multiple bag formation. </p>
<p> </p>
<p>A droplet subjected to external
aerodynamic disturbances disintegrates into smaller droplets and is known as
secondary atomization. Secondary breakup finds relevance is almost every
industry that utilizes sprays for their application. </p>
<p> </p>
|
4 |
Experimentální analýza procesu rozpadu kapaliny u šumivé trysky / Experimental Analysis of the Liquid Breakup Process of an Effervescent AtomizerZaremba, Matouš January 2018 (has links)
The thesis deals with experimental research of mechanism of liquid breakup at twin-fluid atomizers. Four different atomizers were examined at the beginning of the research. Two of them were of standard design (Y-jet and effervescent nozzles), and the rest two atomizers were developed as a part of the thesis (so called CFT and inversed effervescent atomizers). Results show that only the inversed effervescent atomizer was capable of generating stable spray under examined conditions due to the specific breakup mechanism. This mechanism is similar to what was observed in effervescent atomizers. However, the mixing process inside the inversed effervescent atomizer is very different. The specific breakup mechanism was then defined as the main scope of the thesis. It was investigated by the high-speed imaging. The images were then processed by proper orthogonal decomposition and by fast Fourier transformation. Spray spatial development was examined using phase Doppler anemometer. The data was analyzed to describe the dynamics of the spray. A detailed description of the breakup mechanism is made from the combination of the experimental and post-processing techniques. The thesis brings new insight into the understanding of the liquid breakup mechanism and shows a potential for a further development of the inversed effervescent atomizer.
|
Page generated in 0.1135 seconds