• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Palladium(II)-catalysed sp 3 C–H functionalisation of hindered amines and its application in synthesis of astemizole analogues

Ho, Danny Ka Hei January 2016 (has links)
The development of a palladium-catalysed C–H carbonylation of hindered secondary amines is described. Central to this strategy is the temporary conversion of simple ketones into hindered secondary amines that facilitates a sterically promoted palladium-catalysed C–H activation. A range of functional groups are shown to be compatible with this catalytic process, and with exclusive regioselectivity for the terminal ethyl sp 3 C–H in most cases. This method allows an overall incorporation of a carboxyl group to the b-position of terminal ketones, generating 1,4- dicarbonyl moieties which are important synthetic building blocks. The sterically promoted C–H functionalisation strategy has been employed as the key step in the synthesis of a functionalised analogue of astemizole, a pharmaceutical agent which suffers from undesired hERG activity. The increased steric bulk around the tertiary amine, coupled with introduction of a polar hydroxyl group via the C–H acetoxylation reaction, is proposed to reduce binding to the hERG channel. The hERG profile of this analogue is not yet established.
2

EPR studium radikálových reakcí sekundárních aminů probíhajících v kapalné fázi / EPR Study of Radical Reactions of Secondary Amines in Liquid Phase

Šafaříková, Lenka January 2014 (has links)
In the framework of Ph.D. thesis the evaluation of radical reactions of four groups of secondary amines R1–NH–R2 in the presence of some selected types of agents was performed using EPR spectroscopy. First group was represented by peroxoagents (3-chloroperbenzoic acid, tBuO2 radicals), the second group involved compounds of PbIV+ (PbO2, Pb(OAc)4) functioning as hydrogen-abstracting agents. In the presence of peroxyagents the formation of corresponding aminoxyl radicals R1–NO–R2 was demonstrated. In the case of surplus of tBuO2 radicals these radicals enter the consecutive reactions which products are new types of secondary aminoxyls. By the interpretation of reaction mechanism the intermediary formation of nitrones was assumed. These function in later steps of the reaction as spin traps for tBuO2 radicals. By the study of radical mechanism of amines R1–NH–R2 initiated by PbIV+ agents was proved, that these compounds hydrogen atom not only from –NH– group under formation of aminyl radicals, but also from C–H bonds in substituents R1, R2 (the formation of C-radicals). Because both groups of the radicals formed are characterized by high reactivity, their identification was possible only using spin-trapping method. In the course of the investigation of radical reactions of secondary amines the big amount of experimental EPR spectra was obtained. These exhibited in many cases very high hyperfine structure. Due to this fact it was necessary to perform the detailed evaluation on the basis of spectral simulation. Except of some special cases using this approach the interpretation of majority of registered EPR spectra was interpreted and EPR parameters were summarized in tables.
3

Activated carbon catalyzed nitrosamine formation via amine nitrosation

Callura, Jonathan C. 27 August 2014 (has links)
Nitrosamines have garnered increasing attention from researchers and policy makers in recent years due to potential human health implications associated with their unintentional formation in water and wastewater treatment facilities. This work addresses a crucial nitrosamine formation pathway concerning the catalysis of amine nitrosation by activated carbon materials whose use is widespread in municipal and industrial systems. Experimental results show that this catalysis is highly pH dependent, with maximum formation achieved near the pKa value for each of the secondary amines tested. This result suggests that the overall formation potential is governed by individual amine properties and their interactions with carbon surfaces, rather than solely nitrite speciation as previously reported. Formation of the most commonly studied nitrosamine, N-nitrosodimethylamine, was shown to be highly dependent on initial dimethylamine (DMA) solution concentration, with yields of approximately 0.11% of the spiked secondary amine at pH 7.5. Morpholine and dibutylamine, larger and bulkier secondary amines, formed their corresponding nitrosamines at higher yields than DMA (0.21% and 1.69%, respectively). Additionally, select tertiary amines were shown to be capable of undergoing nitrosation on the same order of magnitude as the secondary amines under neutral conditions in the presence of activated carbons. The magnitude of these results indicates that greater attention should be paid to this previously overlooked mechanism for nitrosamine formation.

Page generated in 0.0518 seconds