Spelling suggestions: "subject:"econdary current cell"" "subject:"decondary current cell""
1 |
Prediction of the depth-averaged two-dimensional flow direction along a meander in compound channelsShan, Y., Huang, S., Liu, C., Guo, Yakun, Yang, K. 03 August 2018 (has links)
Yes / For overbank flows in meandering channels, the flow direction along a meander varies and is affected by floodplain vegetation. This study proposes a model for predicting the depth-averaged two-dimensional flow direction (depth-averaged flow angle) along a meander in smooth and vegetated meandering compound channels. Laboratory experiments were performed in smooth and vegetated channels. Measurements show that the height of the secondary current cell in the main channel is increased by dense floodplain vegetation comparing with that in a non-vegetated channel. A method of determining the height of the cell is proposed. At the middle section between the apex and exit sections, where the secondary current cell is absent, the depth-averaged flow angle is independent of the height of the cell. Beyond the middle section, a new secondary current cell is formed, and the flow angle is highly dependent on the height of the cell. The proposed model is thoroughly verified using the flume experimental and field observed data. Good agreement is obtained between predictions and measurements, indicating that the proposed model is capable of accurately predicting the depth-averaged flow angle along a meander in smooth and vegetated meandering compound channels. / National Key Research and Development Program of China (No. 2016YFC0402302), and the National Natural Science Foundation of China (Nos. 51709022, 51609160 and 51539007)
|
2 |
Estimation of flow direction in meandering compound channelsLiu, X., Zhou, Q., Huang, S., Guo, Yakun, Liu, C. 01 November 2017 (has links)
Yes / The flow in the main channel of a meandering compound channel does not occur in the ridge direction because of the effect of the upstream floodplain flows. This study proposes a model for estimating the flow direction in the depth-averaged two-dimensional domain (depth-averaged flow angles) between the entrance and the apex sections. Detailed velocity measurements were performed in the region between the meander entrance section and apex section in a large-scale meandering compound channel. The vertical size of the secondary current cell is highly related to the depth-averaged flow angle; thus, the means of the local flow angles above the secondary current cell and within the cell are separately discussed. The experimental measurements indicate that the mean local flow angle above the cell is equal to the section angle, whereas the mean local flow angle within the cell is equal to zero. The proposed model is validated using published data from five sources. Good agreement is obtained between the predictions and measurements, indicating that the proposed model can accurately estimate the depth-averaged flow direction in the meandering compound channels. Finally, the limitations and application ranges of the model are discussed. / National Key Research and Development Program of China (No. 2016YFC0402302), the National Natural Science Foundation of China (Nos. 51539007 and 51609160)
|
Page generated in 0.0785 seconds