Spelling suggestions: "subject:"3ectional model"" "subject:"3ectional godel""
1 |
Numerical Modeling Of Edremit Geothermal FieldGunay, Emre 01 September 2012 (has links) (PDF)
The purpose of this study is to examine the geothermal potential, sustainability, and reinjection possibility of Edremit geothermal field. In order to investigate this, a numerical model consisting of a hot and cold water aquifer system is established. A two dimensional cross sectional model is set to simulate this geothermal system. Different pressure and temperature values are applied to the nodes at the boundaries to perform a steady state calibration which minimizes the computed results and observed values obtained from the near well logs. After the calibration, three alternative scenarios are proposed and the response of the pressure and temperature to these conditions is evaluated. At first the water is pumped from the wells of Yagci, Derman, Entur and ED-3 seperately at a mass rate of 5 kg/s and energy rate of 4.182 x 105 J/s. Then, in scenario 2 the water is pumped at the same rate from all the wells mentioned in the first scenario together. For the third scenario another well is opened to the geothermal system and 80% of the pumped water (temperature being 200C) is injected to the system from the wells while all the wells mentioned are working. The results of these scenarios are utilized to evaluate the reservoir in terms of its response to different production and reinjection conditions. Interpretation of the reservoir response in view of the pressure and temperature declines emphasize that such a simulation study can be applied to assess potential and sustainability of the geothermal systems.
|
2 |
Large-Scale Testing to Study the Effects of Critical Parameters on the Aerodynamic Behavior of Long Span BridgesKargarmoakhar, Ramtin 25 March 2015 (has links)
Long-span bridges are flexible and therefore are sensitive to wind induced effects. One way to improve the stability of long span bridges against flutter is to use cross-sections that involve twin side-by-side decks. However, this can amplify responses due to vortex induced oscillations.
Wind tunnel testing is a well-established practice to evaluate the stability of bridges against wind loads. In order to study the response of the prototype in laboratory, dynamic similarity requirements should be satisfied. One of the parameters that is normally violated in wind tunnel testing is Reynolds number. In this dissertation, the effects of Reynolds number on the aerodynamics of a double deck bridge were evaluated by measuring fluctuating forces on a motionless sectional model of a bridge at different wind speeds representing different Reynolds regimes. Also, the efficacy of vortex mitigation devices was evaluated at different Reynolds number regimes.
One other parameter that is frequently ignored in wind tunnel studies is the correct simulation of turbulence characteristics. Due to the difficulties in simulating flow with large turbulence length scale on a sectional model, wind tunnel tests are often performed in smooth flow as a conservative approach. The validity of simplifying assumptions in calculation of buffeting loads, as the direct impact of turbulence, needs to be verified for twin deck bridges. The effects of turbulence characteristics were investigated by testing sectional models of a twin deck bridge under two different turbulent flow conditions.
Not only the flow properties play an important role on the aerodynamic response of the bridge, but also the geometry of the cross section shape is expected to have significant effects. In this dissertation, the effects of deck details, such as width of the gap between the twin decks, and traffic barriers on the aerodynamic characteristics of a twin deck bridge were investigated, particularly on the vortex shedding forces with the aim of clarifying how these shape details can alter the wind induced responses.
Finally, a summary of the issues that are involved in designing a dynamic test rig for high Reynolds number tests is given, using the studied cross section as an example.
|
Page generated in 0.0971 seconds