• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Data Aggregation and Gathering Transmission in Wireless Sensor Networks: A Survey

kakani, phani priya January 2013 (has links)
Wireless sensor networks have many sensor devices that send their data to the sink or base station for further processing. This is called direct delivery. But this leads to heavy traffic in the network and as the nodes are limited with energy, this decreases the lifetime of the network. So data aggregation technique is introduced to improve the lifetime. This technique aggregates or merges the multiple incoming packets in to single packet and forwards it to sink. There is different data aggregation techniques based on the topology of the network. This report clearly explains the purpose of data aggregation and gathering in WSN, data aggregation in flat networks and data aggregation in hierarchical networks, different data aggregation techniques in cluster based networks, chain based, tree based and grid based networks. Data aggregation technique can successfully minimize the data traffic and energy consumption only when it is carried out in a secure manner. Part2 of the survey explains the possible attacks that affect data aggregation in wireless sensor network. The secure data aggregation techniques in wireless sensor networks are also discussed in this report.
2

Efficient Authentication, Node Clone Detection, and Secure Data Aggregation for Sensor Networks

Li, Zhijun January 2010 (has links)
Sensor networks are innovative wireless networks consisting of a large number of low-cost, resource-constrained sensor nodes that collect, process, and transmit data in a distributed and collaborative way. There are numerous applications for wireless sensor networks, and security is vital for many of them. However, sensor nodes suffer from many constraints, including low computation capability, small memory, limited energy resources, susceptibility to physical capture, and the lack of infrastructure, all of which impose formidable security challenges and call for innovative approaches. In this thesis, we present our research results on three important aspects of securing sensor networks: lightweight entity authentication, distributed node clone detection, and secure data aggregation. As the technical core of our lightweight authentication proposals, a special type of circulant matrix named circulant-P2 matrix is introduced. We prove the linear independence of matrix vectors, present efficient algorithms on matrix operations, and explore other important properties. By combining circulant-P2 matrix with the learning parity with noise problem, we develop two one-way authentication protocols: the innovative LCMQ protocol, which is provably secure against all probabilistic polynomial-time attacks and provides remarkable performance on almost all metrics except one mild requirement for the verifier's computational capacity, and the HB$^C$ protocol, which utilizes the conventional HB-like authentication structure to preserve the bit-operation only computation requirement for both participants and consumes less key storage than previous HB-like protocols without sacrificing other performance. Moreover, two enhancement mechanisms are provided to protect the HB-like protocols from known attacks and to improve performance. For both protocols, practical parameters for different security levels are recommended. In addition, we build a framework to extend enhanced HB-like protocols to mutual authentication in a communication-efficient fashion. Node clone attack, that is, the attempt by adversaries to add one or more nodes to the network by cloning captured nodes, imposes a severe threat to wireless sensor networks. To cope with it, we propose two distributed detection protocols with difference tradeoffs on network conditions and performance. The first one is based on distributed hash table, by which a fully decentralized, key-based caching and checking system is constructed to deterministically catch cloned nodes in general sensor networks. The protocol performance of efficient storage consumption and high security level is theoretically deducted through a probability model, and the resulting equations, with necessary adjustments for real application, are supported by the simulations. The other is the randomly directed exploration protocol, which presents notable communication performance and minimal storage consumption by an elegant probabilistic directed forwarding technique along with random initial direction and border determination. The extensive experimental results uphold the protocol design and show its efficiency on communication overhead and satisfactory detection probability. Data aggregation is an inherent requirement for many sensor network applications, but designing secure mechanisms for data aggregation is very challenging because the aggregation nature that requires intermediate nodes to process and change messages, and the security objective to prevent malicious manipulation, conflict with each other to a great extent. To fulfill different challenges of secure data aggregation, we present two types of approaches. The first is to provide cryptographic integrity mechanisms for general data aggregation. Based on recent developments of homomorphic primitives, we propose three integrity schemes: a concrete homomorphic MAC construction, homomorphic hash plus aggregate MAC, and homomorphic hash with identity-based aggregate signature, which provide different tradeoffs on security assumption, communication payload, and computation cost. The other is a substantial data aggregation scheme that is suitable for a specific and popular class of aggregation applications, embedded with built-in security techniques that effectively defeat outside and inside attacks. Its foundation is a new data structure---secure Bloom filter, which combines HMAC with Bloom filter. The secure Bloom filter is naturally compatible with aggregation and has reliable security properties. We systematically analyze the scheme's performance and run extensive simulations on different network scenarios for evaluation. The simulation results demonstrate that the scheme presents good performance on security, communication cost, and balance.
3

Efficient Authentication, Node Clone Detection, and Secure Data Aggregation for Sensor Networks

Li, Zhijun January 2010 (has links)
Sensor networks are innovative wireless networks consisting of a large number of low-cost, resource-constrained sensor nodes that collect, process, and transmit data in a distributed and collaborative way. There are numerous applications for wireless sensor networks, and security is vital for many of them. However, sensor nodes suffer from many constraints, including low computation capability, small memory, limited energy resources, susceptibility to physical capture, and the lack of infrastructure, all of which impose formidable security challenges and call for innovative approaches. In this thesis, we present our research results on three important aspects of securing sensor networks: lightweight entity authentication, distributed node clone detection, and secure data aggregation. As the technical core of our lightweight authentication proposals, a special type of circulant matrix named circulant-P2 matrix is introduced. We prove the linear independence of matrix vectors, present efficient algorithms on matrix operations, and explore other important properties. By combining circulant-P2 matrix with the learning parity with noise problem, we develop two one-way authentication protocols: the innovative LCMQ protocol, which is provably secure against all probabilistic polynomial-time attacks and provides remarkable performance on almost all metrics except one mild requirement for the verifier's computational capacity, and the HB$^C$ protocol, which utilizes the conventional HB-like authentication structure to preserve the bit-operation only computation requirement for both participants and consumes less key storage than previous HB-like protocols without sacrificing other performance. Moreover, two enhancement mechanisms are provided to protect the HB-like protocols from known attacks and to improve performance. For both protocols, practical parameters for different security levels are recommended. In addition, we build a framework to extend enhanced HB-like protocols to mutual authentication in a communication-efficient fashion. Node clone attack, that is, the attempt by adversaries to add one or more nodes to the network by cloning captured nodes, imposes a severe threat to wireless sensor networks. To cope with it, we propose two distributed detection protocols with difference tradeoffs on network conditions and performance. The first one is based on distributed hash table, by which a fully decentralized, key-based caching and checking system is constructed to deterministically catch cloned nodes in general sensor networks. The protocol performance of efficient storage consumption and high security level is theoretically deducted through a probability model, and the resulting equations, with necessary adjustments for real application, are supported by the simulations. The other is the randomly directed exploration protocol, which presents notable communication performance and minimal storage consumption by an elegant probabilistic directed forwarding technique along with random initial direction and border determination. The extensive experimental results uphold the protocol design and show its efficiency on communication overhead and satisfactory detection probability. Data aggregation is an inherent requirement for many sensor network applications, but designing secure mechanisms for data aggregation is very challenging because the aggregation nature that requires intermediate nodes to process and change messages, and the security objective to prevent malicious manipulation, conflict with each other to a great extent. To fulfill different challenges of secure data aggregation, we present two types of approaches. The first is to provide cryptographic integrity mechanisms for general data aggregation. Based on recent developments of homomorphic primitives, we propose three integrity schemes: a concrete homomorphic MAC construction, homomorphic hash plus aggregate MAC, and homomorphic hash with identity-based aggregate signature, which provide different tradeoffs on security assumption, communication payload, and computation cost. The other is a substantial data aggregation scheme that is suitable for a specific and popular class of aggregation applications, embedded with built-in security techniques that effectively defeat outside and inside attacks. Its foundation is a new data structure---secure Bloom filter, which combines HMAC with Bloom filter. The secure Bloom filter is naturally compatible with aggregation and has reliable security properties. We systematically analyze the scheme's performance and run extensive simulations on different network scenarios for evaluation. The simulation results demonstrate that the scheme presents good performance on security, communication cost, and balance.

Page generated in 0.1178 seconds