• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An empirical case study on Stack Overflow to explore developers’ security challenges

Rahman, Muhammad Sajidur January 1900 (has links)
Master of Science / Department of Computing and Information Sciences / Eugene Vasserman / The unprecedented growth of ubiquitous computing infrastructure has brought new challenges for security, privacy, and trust. New problems range from mobile apps with incomprehensible permission (trust) model to OpenSSL Heartbleed vulnerability, which disrupted the security of a large fraction of the world's web servers. As almost all of the software bugs and flaws boil down to programming errors/misalignment in requirements, we need to retrace back Software Development Life Cycle (SDLC) and supply chain to check and place security & privacy consideration and implementation plan properly. Historically, there has been a divergent point of view between security teams and developers regarding security. Security is often thought of as a "consideration" or "toll gate" within the project plan rather than being built in from the early stage of project planning, development and production cycles. We argue that security can be effectively made into everyone's business in SDLC through a broader exploration of the users and their social-cultural contexts, gaining insight into their mental models of security and privacy and usage patterns of technology, trying to see why and how security practices being satisfied or not-satisfied, then transferring those observations into new tool building and protocol/interaction design. The overall goal in our current study is to understand the common challenges and/or misconceptions regarding security-related issues among developers. In order to investigate into this issue, we conduct a mixed-method analysis on the data obtained from Stack Overflow(SO), one of the most popular on-line QA sites for software developer community to communicate, collaborate, and share information with one another. In this study, we have adopted techniques from mining software repositories research paradigm and have employed topic modeling for analyzing security-related topics in SO dataset. To our knowledge, our work in SO data mining is one of the earliest systematic attempts to understand the roots of challenges, misconceptions, and deterrent factors, if any, among developers while they try to implement security features during software development. We argue that a proper understanding of these issues is a necessary first step towards "build security in" culture in SDLC.
2

Internet of Things : Tapping into security and privacy issues associated with the internet of things

Ahmad, Nabeel January 2021 (has links)
The Internet of things and its collaborative technologies such as 5G, cloud, artificial intelligence, analytics, and automation will allow people and objects/devices to communicate not only with each other but with anything at any time and anywhere using the internet. Nowadays, people interact with different smart devices daily. Keeping in mind technology’s evolution, it is estimated that each of us will own roughly 15 linked devices by 2030. Therefore, we cannot neglect the impact of this technology on virtually everything and the various risks associated with such emerging technologies. The goal of this thesis was to better understand the phenomenon of the Internet of Things and more importantly, what security, privacy, and trust threats are associated with it. And how these threats can be overcomed. Moreover, how IoT devices are perceived in terms of privacy and security by people and what factors they must keep in mind while buying, using, and disposing of such devices. Literature review and interviews were made to better understand the issues of privacy and security in IoT devices and people’s understanding of them. A general inductive method proposed by the grounded theory was used to analyze the obtained data, and answers were grouped into categories to identify different themes within the data. The results of the interviews and data showed that people’s top priorities with smart home IoT devices were interest in technology, comfort, a better lifestyle, energy savings, and cost savings. People were unaware of the gravity of security and privacy issues by and large, and they had no idea how to counteract them. Common uses of smart devices include virtual assistants, smart heating, listening to music, getting weather and traffic updates, smart lighting, smart lock systems, and fitness gadgets. The results can be seen in the empirical findings and discussion chapters. These results will also be published on relevant Facebook groups and in the local newspaper, Valbyavisen. Data showed IoT understanding and use of technology were directly proportional to the age factor. Young people were more aware and excited as compared to older ones. Finally, some suggestions were presented on how to buy, use, and discard IoT devices. Future research directions were also presented to conclude the thesis report.
3

LEVERAGING MULTIMODAL SENSING FOR ENHANCING THE SECURITY AND PRIVACY OF MOBILE SYSTEMS

Habiba Farrukh (13969653) 26 July 2023 (has links)
<p>Mobile systems, such as smartphones, wearables (e.g., smartwatches, AR/VR headsets),<br> and IoT devices, have come a long way from being just a method of communication to<br> sophisticated sensing devices that monitor and control several aspects of our lives. These<br> devices have enabled several useful applications in a wide range of domains ranging from<br> healthcare and finance to energy and agriculture industries. While such advancement has<br> enabled applications in several aspects of human life, it has also made these devices an<br> interesting target for adversaries.<br> In this dissertation, I specifically focus on how the various sensors on mobile devices can<br> be exploited by adversaries to violate users’ privacy and present methods to use sensors<br> to improve the security of these devices. My thesis posits that multi-modal sensing can be<br> leveraged to enhance the security and privacy of mobile systems.<br> In this, first, I describe my work that demonstrates that human interaction with mobile de-<br> vices and their accessories (e.g., stylus pencils) generates identifiable patterns in permissionless<br> mobile sensors’ data, which reveal sensitive information about users. Specifically, I developed<br> S3 to show how embedded magnets in stylus pencils impact the mobile magnetometer sensor<br> and can be exploited to infer a users incredibly private handwriting. Then, I designed LocIn<br> to infer a users indoor semantic location from 3D spatial data collected by mixed reality<br> devices through LiDAR and depth sensors. These works highlight new privacy issues due to<br> advanced sensors on emerging commodity devices.<br> Second, I present my work that characterizes the threats against smartphone authentication<br> and IoT device pairing and proposes usable and secure methods to protect against these threats.<br> I developed two systems, FaceRevelio and IoTCupid, to enable reliable and secure user and<br> device authentication, respectively, to protect users’ private information (e.g., contacts,<br> messages, credit card details) on commodity mobile and allow secure communication between<br> IoT devices. These works enable usable authentication on diverse mobile and IoT devices<br> and eliminate the dependency on sophisticated hardware for user-friendly authentication.</p>
4

thesis.pdf

Jianliang Wu (15926933) 30 May 2023 (has links)
<p>Bluetooth is the de facto standard for short-range wireless communications. Besides Bluetooth Classic (BC), Bluetooth also consists of Bluetooth Low Energy (BLE) and Bluetooth Mesh (Mesh), two relatively new protocols, paving the way for its domination in the era of IoT and 5G. Meanwhile, attacks against Bluetooth, such as BlueBorne, BleedingBit, KNOB, BIAS, and BThack, have been booming in the past few years, impacting the security and privacy of billions of devices. These attacks exploit both design issues in the Bluetooth specification and vulnerabilities of its implementations, allowing for privilege escalation, remote code execution, breaking cryptography, spoofing, device tracking, etc.</p> <p><br></p> <p>To secure Bluetooth, researchers have proposed different approaches for both Bluetooth specification (e.g., formal analysis) and implementation (e.g., fuzzing). However, existing analyses of the Bluetooth specification and implementations are either done manually, or the automatic approaches only cover a small part of the targets. As a consequence, current research is far from complete in securing Bluetooth.</p> <p><br></p> <p>Therefore, in this dissertation, we propose the following research to provide missing pieces in prior research toward completing Bluetooth security research in terms of both Bluetooth specification and implementations. (i) For Bluetooth security at the specification level, we start from one protocol in Bluetooth, BLE, and focus on the previously unexplored reconnection procedure of two paired BLE devices. We conduct a formal analysis of this procedure defined in the BLE specification to provide security guarantees and identify new vulnerabilities that allow spoofing attacks. (ii) Besides BLE, we then formally verify other security-critical protocols in all Bluetooth protocols (BC, BLE, and Mesh). We provide a comprehensive formal analysis by covering the aspects that prior research fails to include (i.e., all possible combinations of protocols and protocol configurations) and considering a more realistic attacker model (i.e., semi-compromised device). With this model, we are able to rediscover five known vulnerabilities and reveal two new issues that affect BC/BLE dual-stack devices and Mesh devices, respectively. (iii) In addition to the formal analysis of specification security, we propose and build a comprehensive formal model to analyze Bluetooth privacy (i.e., device untraceability) at the specification level. In this model, we convert device untraceability into a reachability problem so that it can be verified using existing tools without introducing false results. We discover four new issues allowed in the specification that can lead to eight device tracking attacks. We also evaluate these attacks on 13 Bluetooth implementations and find that all of them are affected by at least two issues. (iv) At the implementation level, we improve Bluetooth security by debloating (i.e., removing code) Bluetooth stack implementations, which differs from prior automatic approaches, such as fuzzing. We keep only the code of needed functionality by a user and minimize their Bluetooth attack surface by removing unneeded Bluetooth features in both the host stack code and the firmware. Through debloating, we can remove 20 known CVEs and prevent a wide range of attacks again Bluetooth. With the research presented in this thesis, we improve Bluetooth security and privacy at both the specification and implementation levels.</p>

Page generated in 0.0482 seconds