• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • Tagged with
  • 14
  • 14
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The hydrogeochemistry of the Tertiary Basal Sands aquifier, London basin

Long, Juliet L. A. January 1995 (has links)
No description available.
2

Soil erosion and suspended sediment dynamics in intensive agricultural catchments

Sherriff, Sophie C. January 2015 (has links)
Excessive delivery of fine sediment from agricultural river catchments to aquatic ecosystems can degrade chemical water quality and ecological habitats. Management of accelerated soil losses and the transmission of sediment-associated agricultural pollutants, such as phosphorus, is required to mitigate the drive towards sustainable intensification to increase global food security. Quantifying soil erosion and the pathways and fate of fine-grained sediment is presently under-researched worldwide, and particularly in Ireland. This thesis established a sediment monitoring network upon an existing catchment study programme (Agricultural Catchments Programme) in five instrumented catchments (~10 km2) across Ireland. The research used novel, high quality measurement and analysis techniques to quantify sediment export, determine controls on soil erosion and sediment transport, and identify sediment contributions from multiple sources in different agricultural systems over time to evaluate approaches to fine sediment management. Results showed suspended sediment measurement using a novel ex situ methodology was valid in two of the study catchments against in situ and direct depth-integrated cross-section methodologies. Suspended sediment yields in the five intensive agricultural catchments were relatively low compared to European catchments in the same climatic zone, attributed to regionally-specific land use patterns and land management practices expressed in terms of ‘landscape complexity’ (irregular, small field sizes partitioned by abundant hedgerows and high drainage ditch densities) resulting in low field-to-channel connectivity. Variations in suspended sediment yield between catchments were explained primarily by soil permeability and ground cover, whereby arable land use on poorly-drained soils were associated with the largest sediment yields. Storm-event sediment export and sediment fingerprinting data demonstrated that sediment connectivity fluctuations resulted from rainfall seasonality, which in turn regulated the contrasting spatial and temporal extent of surface hydrological pathways. Increased transport occurred when and where sediment sources were available as a result of hillslope land use (low groundcover) or channel characteristics. Field topsoils were most vulnerable when low groundcover coincided with surface hydrological pathways; frequently on poorly-drained soils and following extreme rainfall events on well-drained soils as storage decreased. Although well-drained soils currently demonstrate low water erosion risk, past sugar beet crops exposed freshly drilled soils during periods of greater rainfall risk and soil removal during crop harvesting. Sediment loss from grassland catchments dominated by poorly-drained soils and extensive land drainage (sub-surface and surface) primarily derived from channel banks due to the delivery of high velocity flows from up-catchment drained hillslopes. Catchment specific soil erosion and sediment loss mitigation measures are imperative to cost-effectively preserve or improve soil and freshwater ecosystem quality worldwide.
3

Effets de la bioturbation sur la diversité des communautés bactériennes du sédiment : approches expérimentale et in-situ : de Melinna palmata aux communautés de la vasière Ouest-Gironde. / Effects of bioturbation on the diversity of bacterial communities in the sediment : experimental and in situ approaches : from Melina palmata to the West Gironde mud patch.

Massé, Cécile 15 December 2014 (has links)
Le lien entre la macrofaune et les communautés bactériennes benthiques a été déterminé selon deux approches : (1) une approche expérimentale à l’échelle de l’individu ciblée sur les effets de l’activité et de la bioturbation du polychète déposivore de surface Melinna palmata sur la distribution des communautés bactériennes des premiers millimètres de l’interface eau-sédiment ; (2) une approche in situ à l’échelle de la communauté de mise en corrélation des patrons spatiaux de distribution des communautés de macrofaune et de bactéries.Melinna palmata appartient à un nouveau groupe fonctionnel de bioturbation décrit pour la première fois, convoyeur de surface. L’utilisation de ce nouveau modèle biologique a permis de mettre en évidence que les activités de prospection et d’égestions modifient significativement la distribution des communautés bactériennes de la couche oxique de l’interface eau-sédiment. Ce lien est à la fois influencé par l’apport de matière organique de différentes qualités, et impacte la consommation et la minéralisation de cette matière organique.Le lien entre les patrons spatiaux de distribution des communautés de macrofaune et de bactéries a été étudié in situ, dans la vasière Ouest-Gironde. Les deux compartiments ont évolué le long d’un gradient avéré de teneur en matière organique et de taille des particules dans cette vasière.La corrélation des matrices biologiques n’a cependant pas été statistiquement significative et nécessite d’être approfondi. / The link between benthic macrofauna and bacterial communities was assessed with two different approaches: (1) an experimental approach at the individual scale, focused on the effects of behaviour and bioturbation of the deposit feeder polychaete Melinna palmata on the bacteria lcommunity distribution on the very sediment-water interface; (2) an in situ approach at the scale of the community, focused on the correlation between spatial distribution patterns of the two biological compartments. Melinna palmata belongs to a new functional group of bioturbation described for the first time: surface conveyor. Its use allowed determining that prospection and egestion induced a significant change of bacterial communities on the sediment-water interface. This link was influenced by organic matter enrichment while influencing its fate. In a second part, the link between spatial distribution patterns of the communities was assessed in situ in the West-Gironde mud patch. Both macrofauna and bacteria changed along a gradient of organic matter quantity and quality and of particles size described in this system. However, the correlation between matrices was not statistically significant and needs to be more developed.
4

Remineralização da matéria orgânica sedimentar em resposta à simulação de processos oceanográficos / Remineralization of sedimentary organic matter in response to oceanographic process simulation

Godoi, Ana Carolina 17 October 2013 (has links)
Os sedimentos marinhos são receptores finais de vários compostos da coluna de água, possuindo uma participação ativa nos ciclos biogeoquímicos. Comunidades microbianas possuem um papel crucial nestes ciclos, sendo responsáveis por grande parte da remineralização da matéria orgânica em sedimentos superficiais. Foram realizados dois experimentos com simulações de processos oceanográficos em microcosmos: Enriquecimento Orgânico, testando a diferença entre a chegada de fitoflagelados e diatomáceas no sedimento e Ressuspensão, simulando a passagem de frente fria. Foram analisados os compostos referentes à qualidade e quantidade da matéria orgânica sedimentar, assim como o fluxo de nutrientes da interface água-sedimento. No Experimento Enriquecimento, as diferentes algas causaram respostas distintas nos processos de degradação da matéria orgânica, aumentando a qualidade e o metabolismo das comunidades presentes, além de modificar os fluxos de nutrientes, sendo notada uma resposta mais rápida nos mecanismos de degradação devido à adição do fitoflagelados. No Experimento Ressuspensão, o distúrbio físico ocasionou uma resposta imediata e significativa na liberação dos nutrientes do sedimento para a interface água-sedimento e alterações nas concentrações de ácidos graxos, principalmente nos dois primeiros dias após a simulação. Logo, os diferentes eventos oceanográficos simulados comprovaram sua influência frente aos processos biogeoquímicos, principalmente na disponibilidade de ácidos graxos e na liberação de nutrientes para a água sobrejacente / Marine sediments are the final receivers of many organic compounds from the water column, playing an important role in biogeochemical cycles. Microbial communities are important to these cycles as they remineralize organic matter within surface sediments. Microcosm experiments were conducted to simulate two important oceanographic processes: Organic Enrichment, to test differences between sinking patterns of phytoflagellates and diatoms and Resuspension, simulating the passage of a cold front. The quality and amount of the organic matter was assessed, as well as the nutrient flow between the sediment-water interface. In the Enrichment Experiment, distinctive responses in the degradation processes were noted between treatments where the addition of phytoflagellates increased the quality of the organic matter, caused faster metabolism communities present in the sediment, and modify the patterns of nutrient flux rates. In the Resuspension Experiment, the physical disturbance caused an immediate and significant release of nutrients from the sediment to the sediment-water interface and changed the in the concentrations of fatty acid content most notably during two days after the resuspension event. Thus, the different simulated oceanographic events influenced biogeochemical processes, particularly in the availability of fatty acids and the release of nutrients to the overlying water
5

Remineralização da matéria orgânica sedimentar em resposta à simulação de processos oceanográficos / Remineralization of sedimentary organic matter in response to oceanographic process simulation

Ana Carolina Godoi 17 October 2013 (has links)
Os sedimentos marinhos são receptores finais de vários compostos da coluna de água, possuindo uma participação ativa nos ciclos biogeoquímicos. Comunidades microbianas possuem um papel crucial nestes ciclos, sendo responsáveis por grande parte da remineralização da matéria orgânica em sedimentos superficiais. Foram realizados dois experimentos com simulações de processos oceanográficos em microcosmos: Enriquecimento Orgânico, testando a diferença entre a chegada de fitoflagelados e diatomáceas no sedimento e Ressuspensão, simulando a passagem de frente fria. Foram analisados os compostos referentes à qualidade e quantidade da matéria orgânica sedimentar, assim como o fluxo de nutrientes da interface água-sedimento. No Experimento Enriquecimento, as diferentes algas causaram respostas distintas nos processos de degradação da matéria orgânica, aumentando a qualidade e o metabolismo das comunidades presentes, além de modificar os fluxos de nutrientes, sendo notada uma resposta mais rápida nos mecanismos de degradação devido à adição do fitoflagelados. No Experimento Ressuspensão, o distúrbio físico ocasionou uma resposta imediata e significativa na liberação dos nutrientes do sedimento para a interface água-sedimento e alterações nas concentrações de ácidos graxos, principalmente nos dois primeiros dias após a simulação. Logo, os diferentes eventos oceanográficos simulados comprovaram sua influência frente aos processos biogeoquímicos, principalmente na disponibilidade de ácidos graxos e na liberação de nutrientes para a água sobrejacente / Marine sediments are the final receivers of many organic compounds from the water column, playing an important role in biogeochemical cycles. Microbial communities are important to these cycles as they remineralize organic matter within surface sediments. Microcosm experiments were conducted to simulate two important oceanographic processes: Organic Enrichment, to test differences between sinking patterns of phytoflagellates and diatoms and Resuspension, simulating the passage of a cold front. The quality and amount of the organic matter was assessed, as well as the nutrient flow between the sediment-water interface. In the Enrichment Experiment, distinctive responses in the degradation processes were noted between treatments where the addition of phytoflagellates increased the quality of the organic matter, caused faster metabolism communities present in the sediment, and modify the patterns of nutrient flux rates. In the Resuspension Experiment, the physical disturbance caused an immediate and significant release of nutrients from the sediment to the sediment-water interface and changed the in the concentrations of fatty acid content most notably during two days after the resuspension event. Thus, the different simulated oceanographic events influenced biogeochemical processes, particularly in the availability of fatty acids and the release of nutrients to the overlying water
6

Predicting Ecosystem Response from Pollution in Baltic Archipelago areas using Mass-balance Modelling

Karlsson, Olof Magnus January 2011 (has links)
Baltic archipelago areas have high nature values despite being polluted from various antrophogenic activities within the Baltic Sea catchment area and from long-range transport of airborne substances. The discovery of environmental problems in the Baltic Sea in the 1960s led to countermeasures that gradually gave results in reducing the toxic pollution, e.g. from PCBs. Today, much of the environmental management is focused on reducing the effects of eutrophication. There is a demand from society on science to develop strategies that can direct remedial actions so that the cost-effectiveness is maximised. This work focuses on how mass-balance models can be used to understand how coastal ecosystems are controlled by abiotic processes and to predict the response to changes in loading of different substances. Advection, sedimentation and burial are examples of general transport processes that are regulated by morphometrical characteristics, e.g. size, form, effective fetch and topographical openness. This is why different coastal areas have different sensitivity to loading of pollutants. A comparison of six phosphorus and chlorophyll models of different complexity showed that the model performance was not improved with more state variables of total phosphorus (TP) than two water and two sediment compartments. Modelling chlorophyll as a separate state variable did not improve the results for individual values compared to a simple regression against total phosphorus in surface water. Field investigations of the phosphorus content in accumulation sediments along the coast of Svealand showed a distribution pattern that probably is related to differences in the redox status. The average content of mobile phosphorus was much higher than previously found in offshore Baltic sediments indicating that sediments may play an important role for the phosphorus turnover in Baltic archipelago areas. A one-year field study to measure the levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in water, sediments and fish during different seasons was carried out in Kallrigafjärden Bay. The collected data set was used to test a mass-balance model for PCCD/F-turnover. It was possible to reproduce the concentrations of different PCDD/F-congeners with high accuracy using a general model approach, including one water compartment and two sediment compartments, indicating that the applied model has the necessary qualifications for successful predictions of PCDD/F-turnover in Baltic coastal areas. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 736
7

The fate and effects of human pharmaceuticals in the aquatic environment.

Williams, Michael January 2007 (has links)
There is relatively little known about the fate of human pharmaceuticals once they are released into the aquatic environment and what adverse impacts these compounds have on exposed aquatic organisms. Both of these factors are essential in defining the potential risk pharmaceuticals pose in the aquatic environment. For this project up to 14 human therapeutic agents were selected as representative compounds to assess both their fate and effects within model aquatic systems. Considering sediments often serve as a repository for aquatic contaminants, the interaction of the selected pharmaceuticals with sediment was assessed. The sorption of the selected pharmaceuticals was found to be highly variable. Furthermore, the solution pH and ionic strength, due to Ca2+, were found to exert a large degree of influence on the extent of sorption observed. These solution parameters, among others, may therefore make it difficult to predict the fate of pharmaceuticals, in terms of their association with sediments, using standardised assessment methods alone. There is an extensive pool of knowledge on pharmaceuticals, in terms of their pharmacological profile, so their distribution within the human body (using the volume of distribution or VD) was compared with their distribution within a sediment / water system (using the partition coefficient or Kd). The correlation between the VD and Kd indicated this relationship provided a reasonable basis for estimating the distribution of drugs within the test sediment / water systems. This finding suggests that further exploration of the use of pharmacological data in understanding the potential fate of pharmaceuticals in aquatic systems is warranted. The extent of the pharmaceuticals respective desorption values was also found to be highly variable within a standard test system. Further analysis on the desorption of carbamazepine, an anti-epileptic drug, was undertaken using an isotopic dilution technique. Observations from the isotopic dilution study indicated that both contact time with sediment and the quality of organic carbon could play an important role in the potential for sediments to irreversibly sorb carbamazepine present in aquatic systems. The desorption hysteresis observed for the other pharmaceuticals also indicates considerable effort is still required to address the issue of whether sediments can be a means of reducing exposure of pharmaceuticals to aquatic organisms (a “sink”) or a means of increasing exposure to sediment-dependent organisms (a “source”). The necessity for further work on investigating the role that sorption with sediments may play in the fate and effects of human pharmaceuticals was highlighted by a series of ecotoxicological assays in both sediment and solution-only systems. Sediment-dwelling freshwater midges, Chironomus tepperi, were exposed to carbamazepine in both short- and long-term assays. Wet weight was found to be significantly reduced during short-term assays, while the development of C. tepperi larvae was found to be significantly inhibited when exposed to spiked sediment, over a longer exposure period. For these assays, the aqueous phase may have been a more important route of exposure of carbamazepine for the midges. This study has indicated that sediments are likely to play an important role in the fate of pharmaceuticals and, subsequently, their effects. However, considerably more effort is required to assess the role sediments have and how this knowledge can be linked with current regulatory ecological risk assessments. / http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1298389 / Thesis (Ph.D.) -- University of Adelaide, School of Earth and Environmental Sciences, 2007
8

The fate and effects of human pharmaceuticals in the aquatic environment.

Williams, Michael January 2007 (has links)
There is relatively little known about the fate of human pharmaceuticals once they are released into the aquatic environment and what adverse impacts these compounds have on exposed aquatic organisms. Both of these factors are essential in defining the potential risk pharmaceuticals pose in the aquatic environment. For this project up to 14 human therapeutic agents were selected as representative compounds to assess both their fate and effects within model aquatic systems. Considering sediments often serve as a repository for aquatic contaminants, the interaction of the selected pharmaceuticals with sediment was assessed. The sorption of the selected pharmaceuticals was found to be highly variable. Furthermore, the solution pH and ionic strength, due to Ca2+, were found to exert a large degree of influence on the extent of sorption observed. These solution parameters, among others, may therefore make it difficult to predict the fate of pharmaceuticals, in terms of their association with sediments, using standardised assessment methods alone. There is an extensive pool of knowledge on pharmaceuticals, in terms of their pharmacological profile, so their distribution within the human body (using the volume of distribution or VD) was compared with their distribution within a sediment / water system (using the partition coefficient or Kd). The correlation between the VD and Kd indicated this relationship provided a reasonable basis for estimating the distribution of drugs within the test sediment / water systems. This finding suggests that further exploration of the use of pharmacological data in understanding the potential fate of pharmaceuticals in aquatic systems is warranted. The extent of the pharmaceuticals respective desorption values was also found to be highly variable within a standard test system. Further analysis on the desorption of carbamazepine, an anti-epileptic drug, was undertaken using an isotopic dilution technique. Observations from the isotopic dilution study indicated that both contact time with sediment and the quality of organic carbon could play an important role in the potential for sediments to irreversibly sorb carbamazepine present in aquatic systems. The desorption hysteresis observed for the other pharmaceuticals also indicates considerable effort is still required to address the issue of whether sediments can be a means of reducing exposure of pharmaceuticals to aquatic organisms (a “sink”) or a means of increasing exposure to sediment-dependent organisms (a “source”). The necessity for further work on investigating the role that sorption with sediments may play in the fate and effects of human pharmaceuticals was highlighted by a series of ecotoxicological assays in both sediment and solution-only systems. Sediment-dwelling freshwater midges, Chironomus tepperi, were exposed to carbamazepine in both short- and long-term assays. Wet weight was found to be significantly reduced during short-term assays, while the development of C. tepperi larvae was found to be significantly inhibited when exposed to spiked sediment, over a longer exposure period. For these assays, the aqueous phase may have been a more important route of exposure of carbamazepine for the midges. This study has indicated that sediments are likely to play an important role in the fate of pharmaceuticals and, subsequently, their effects. However, considerably more effort is required to assess the role sediments have and how this knowledge can be linked with current regulatory ecological risk assessments. / http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1298389 / Thesis (Ph.D.) -- University of Adelaide, School of Earth and Environmental Sciences, 2007
9

The fate and effects of human pharmaceuticals in the aquatic environment.

Williams, Michael January 2007 (has links)
There is relatively little known about the fate of human pharmaceuticals once they are released into the aquatic environment and what adverse impacts these compounds have on exposed aquatic organisms. Both of these factors are essential in defining the potential risk pharmaceuticals pose in the aquatic environment. For this project up to 14 human therapeutic agents were selected as representative compounds to assess both their fate and effects within model aquatic systems. Considering sediments often serve as a repository for aquatic contaminants, the interaction of the selected pharmaceuticals with sediment was assessed. The sorption of the selected pharmaceuticals was found to be highly variable. Furthermore, the solution pH and ionic strength, due to Ca2+, were found to exert a large degree of influence on the extent of sorption observed. These solution parameters, among others, may therefore make it difficult to predict the fate of pharmaceuticals, in terms of their association with sediments, using standardised assessment methods alone. There is an extensive pool of knowledge on pharmaceuticals, in terms of their pharmacological profile, so their distribution within the human body (using the volume of distribution or VD) was compared with their distribution within a sediment / water system (using the partition coefficient or Kd). The correlation between the VD and Kd indicated this relationship provided a reasonable basis for estimating the distribution of drugs within the test sediment / water systems. This finding suggests that further exploration of the use of pharmacological data in understanding the potential fate of pharmaceuticals in aquatic systems is warranted. The extent of the pharmaceuticals respective desorption values was also found to be highly variable within a standard test system. Further analysis on the desorption of carbamazepine, an anti-epileptic drug, was undertaken using an isotopic dilution technique. Observations from the isotopic dilution study indicated that both contact time with sediment and the quality of organic carbon could play an important role in the potential for sediments to irreversibly sorb carbamazepine present in aquatic systems. The desorption hysteresis observed for the other pharmaceuticals also indicates considerable effort is still required to address the issue of whether sediments can be a means of reducing exposure of pharmaceuticals to aquatic organisms (a “sink”) or a means of increasing exposure to sediment-dependent organisms (a “source”). The necessity for further work on investigating the role that sorption with sediments may play in the fate and effects of human pharmaceuticals was highlighted by a series of ecotoxicological assays in both sediment and solution-only systems. Sediment-dwelling freshwater midges, Chironomus tepperi, were exposed to carbamazepine in both short- and long-term assays. Wet weight was found to be significantly reduced during short-term assays, while the development of C. tepperi larvae was found to be significantly inhibited when exposed to spiked sediment, over a longer exposure period. For these assays, the aqueous phase may have been a more important route of exposure of carbamazepine for the midges. This study has indicated that sediments are likely to play an important role in the fate of pharmaceuticals and, subsequently, their effects. However, considerably more effort is required to assess the role sediments have and how this knowledge can be linked with current regulatory ecological risk assessments. / http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1298389 / Thesis (Ph.D.) -- University of Adelaide, School of Earth and Environmental Sciences, 2007
10

The classification of inland salt lakes in Western Australia

Gregory, Stacey J January 2007 (has links)
Inland salt lakes in Western Australia have been used by the mining industry for the disposal of excess water generated during the mining process. However, the impact of these operations on the salt lakes is poorly understood. This is mainly due to the lack of information on the biota and chemistry for the lakes. The main aim of this project was to develop a classification system for inland salt lakes of Western Australia based on abiotic and biotic factors such as sediment and water quality, invertebrates and algae to determine lakes with unique or significant features. Water and sediments collected from the salt lakes were generally characterised by an alkaline pH, high salinity and the majority of lakes being dominated by sodium and chloride. Concentrations of some metals were also high, particularly in surface water. A high degree of variation in water and sediment quality was demonstrated both within and between the study lakes. In addition, these parameters were shown to be influenced by geography, geology, stage of the hydrocycle within which the lake was sampled and the occurrence of dewatering discharge. Biota in the salt lakes must be able to cope in a harsh environment, adjusting to temporary water regime, high temperature, and high salinity. As such, the species richness of these systems is generally low. Diatoms (a group of algae) and invertebrates were investigated among the biota. A total of 56 diatom species were recorded from 24 lakes. The most common species were Amphora coffeaeformis, Hantzschia aff. baltica and Navicula aff. incertata. These species were shown to have broad tolerances to environmental variations. Sediment chemistry explained variations in diatom community structure, with zinc, moisture content and cobalt having the greatest and negative influence. / In terms of invertebrates, a total of 101 invertebrate taxa were recorded from 13 lakes in this study. Crustacea dominated and the greatest number of taxa was from the genus Parartemia. There were some differences in invertebrate community structure between lakes, most likely reflecting the high degree of speciation, and poor dispersal mechanisms of certain key species. Community structure was influenced by water quality, with phosphorus, bicarbonate and magnesium contributing to the variations in community structure. Among the 43 lakes chosen for this study a total of 17 lakes had received, or are currently receiving dewatering discharge. Sites receiving dewatering discharge generally reported higher concentrations of salts, nutrients and some metals in both water and sediments compared to natural lakes. Species richness of biota such as diatoms and invertebrates was lower at the lakes receiving dewatering discharge. However, the impact was generally localized within the pooled area of dewatering discharge. Also, despite these impacts, there appears to be signs of amelioration by flushing events. Currently there are no guidelines for water and sediment chemistry for inland salt lakes in Western Australia. Australian and New Zealand Environment and Conservation Council (ANZECC) guidelines are the most relevant available. Concentrations of cadmium, cobalt, chromium, copper, lead, nickel and zinc in surface water of the natural inland salt lakes were shown to exceed ANZECC guideline values. / Comparison with the relevant ANZECC sediment guidelines showed that they were applicable to the salt lakes, with the exception of nickel and chromium which were naturally high in the salt lake sediments. Classification of data using multivariate analysis was done for both dry and wet phases of the hydroperiod. Six groups were delineated for the sediment and diatom data, and four groups were defined for the water quality and invertebrate data. It was common for sites from particular lakes to fall in more than one group as a result of the variability in these systems. There are a number of practical applications of this system for the mining industry and it may be used as a predictive tool for determining the impact of dewatering discharge and highlighting unique salt lakes within the Goldfields of Western Australia.

Page generated in 0.1478 seconds