• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Incipient motion and particle transport in gravel-bed streams

Matin, Habib 12 December 1994 (has links)
The incipient motion of sediment particles in gravel-bed rivers is a very important process. It represents the difference between bed stability and bed mobility. A field study was conducted in Oak Creek, Oregon to investigate incipient motion of individual particles in gravel-bed streams. Investigation was also made of the incipient motion of individual gravel particles in the armor layer, using painted gravel placed on the bed of the stream and recovered after successive high flows. The effect of gravel particle shape was examined for a wide range of flow conditions to determine its significance on incipient motion. The result of analysis indicates a wide variation in particle shapes present. Incipient motion and general transport were found to be generally independent of particle shape regardless of particle sizes. A sample of bed material may contain a mixture of shapes such as well-rounded, oval, flat, disc-like, pencil-shaped, angular, and block-like. These are not likely to move in identical manners during transport nor to start motion at the same flow condition. This leads to questions about the role of shape in predicting incipient motion and equal mobility in gravel-bed streams. The study suggests that gravel particles initiate motion in a manner that is independent of particle shape. One explanation may be that for a natural bed surface many particles rest in orientations that give them the best: protection against disturbance, probably a result of their coming to rest gradually during a period of decreasing flows, rather than being randomly dumped. But even when tracer particles were placed randomly in the bed surface there was no evident selectively for initiation of motion on the basis of particle shape. It can be concluded from analysis based on the methods of Parker et al. and Komar that there is room for both equal mobility and flow-competence evaluations. However, the equal mobility concept is best applied for conditions near incipient motion and the flow-competence concept is best applied for larger flows and general bedload transport. Furthermore, with an armored bed, such as that at Oak Creek, there is a tendency for a more-nearly equal mobility (or equivalent) for the normalized transport rates for the various size fractions when incipient motion and moderate bedload transport occurs. / Graduation date: 1995
2

Application of Numerical Modeling to Study River Dynamics: Hydro-Geomorphological Evolution Due to Extreme Events in the Sandy River, Oregon

Muhammad, Sarkawt Hamarahim 06 March 2017 (has links)
The Sandy River (OR) is a coastal tributary of the Columbia River and has a steep hydroshed 1316 square kilometers which is located on the western side of Mount Hood (elevation range 3 m to 1800 m). The system exhibits highly variable flow: Its average discharge is ~40 m3/s, and the highest recorded discharge was 1739 m3/s in 1964. In this study I model the geomorphic sensitivity of an 1800m reach located the downstream of the former Marmot Dam, which was removed in 2007. The hydro-geomorphic response to major flood has implications for system management and aquatic life. Studying hydro-geomorphic change requires a systematic approach. Here, I define flows and flood hydrographs for specified return interval based on the observed hydrologic record, and then examine potential hydro-geomorphic changes using a numerical model. A Pearson Type III distribution is used to calculate 100, 75, 50, 25, 10, and 2 year return periods. Extreme event hydrographs are derived by fitting derived and observed flood hydrographs to the gamma distribution curve. Sediment transport and geomorphology are then modeled numerically with Nays2DH, a solver that is part of iRIC software. Because the model is computationally intensive, I model the domain with five different spatial grid resolutions, to find proper grid resolution. The grid resolutions used are 1.5 m, 2 m, 3 m, 4 m, and 5 m. We choose 4 m as optimum grid resolution, based on the convergence of model results. The model is run for extreme event hydrographs with six above return periods. For result visualization and analysis, we focus on flow properties and bed elevation at peak flow and at the end of each event. For both times for each event, important flow and sediment transport parameters are visualized for the entire domain in plane form and eight cross-sections at 200 m intervals. Finally, we divide the geomorphic response into areas of erosion and deposition. Linear regression analyses of mean values of erosion and deposition at peak flow for all extreme events yield R2 of 0.981 for erosion and 0.986 for deposition. The mean erosion and deposition depth at the end of the events is modeled by nonlinear regression with correlation coefficient of 0.965 for erosion and 0.998 for deposition. The regression models provide direct understanding of impacts of different floods on the geomorphic response of the river domain. examination of the model as a whole suggest that the amount of erosion and deposition in the bed and banks is a function of channel geometry, bank and bed geology, riparian area condition and strongly depend on the amount of flow through the channel.
3

Swash zone sediment suspension and transport

Puleo, Jack A. 14 July 1998 (has links)
Graduation date: 1999
4

Sediment reservoir dynamics on steepland valley floors : influence of network structure and effects of inherited ages

Frueh, Walter Terry 05 December 2011 (has links)
Sediment deposit ages inferred from radiocarbon dating of stream bank material were used to estimate residence times of valley-floor deposits in headwater valleys of the Oregon Coast Range, USA. Inherited ages of radiocarbon-dated material, i.e., time between carbon fixation in wood and its incorporation in a sediment deposit, can result in over-estimation of the ages of those deposits and, hence, the residence times of sediment within those units. Calibrated radiocarbon dates of 126 charcoal pieces sampled from Knowles Creek were used to estimate the distribution of inherited ages in fourteen depositional units representing three deposit types: fluvial fines, fluvial gravels, and debris flows. Within a depositional unit, the inherited age distribution of a piece of charcoal was estimated by convolving its calibrated age distribution with that of the piece of charcoal with the smallest weighted-mean calibrated age (i.e., an approximation of a unit's date of deposition) within that unit. All inherited age distributions for a particular deposit type were then added and normalized to provide a probability distribution of inherited ages for that deposit type. Probability distributions of inherited ages average 688, 1506, and 666 yr for fluvial fines, fluvial gravels, and debris flow units, respectively. Curves were fit to inherited age distributions for each deposit type. These curve fits were then convolved with deposit age distributions (i.e., equal to calibrated age distributions of woody material sampled from stream banks) of samples from Bear Creek (Lancaster and Casebeer, 2007) to correct these deposit ages for inherited age. This convolution gives a corrected deposit age. In cases in which means of corrected deposit age distributions for an upper unit were older than those of a lower unit within a stratigraphic column, the upper sample’s corrected deposit age distribution was set to that of the youngest lower in the stratigraphic section. Convolution shifted individual deposit age distributions towards zero and increased their standard deviation by an average of 365%. However, convolution decreased the standard deviations of normalized probability distribution functions of deposit ages inferred from many samples from 1340 to 1197 yr, and from 471 to 416 yr for lower and upper reaches, respectively, of the Bear Creek valley in the Oregon Coast Range. Convolution decreased estimates of mean deposit ages from 1296 to 1051 yr, and from 308 to 245 yr for lower and upper reaches, respectively, of the Bear Creek. Estimates of percentages of basin denudation passing through each reach's deposit ("trapping efficiency") increased from 11.6% to 14.4%, and from 25.4% to 31.9% for lower and upper Bear Creek, respectively. However, basic shapes of residence time distributions and, thus, inferences regarding removal of sediment from the reaches did not change after deposit dates were corrected. Sediment residence times in the lower Bear Creek valley are exponentially distributed, which implies that all sediment has a uniform probability of evacuation from deposits, whereas the power-law-distributed residence times in upper Bear imply preferential evacuation of younger deposits and preservation of older deposits. Much of the sediment transported onto valley floors via debris flows is deposited, and then is evacuated over longer times. Volumes and residence times of stored sediment in these deposits at the transition from debris flow to fluvial evacuation, and their associated width of valley floors, vary throughout a network. Export volumes and frequencies from tributaries are controls on deposit volumes and may control valley widening of mainstem valley floors. In addition, closely spaced tributaries may exert composite effects on valley floor landforms. It is hypothesized that the volumes of sediment stored at confluences increases with contributing watershed area of tributaries to the point where tributary slopes are low enough to cause most debris flows to be deposited within tributary valleys instead of in the mainstem valley. In four ~1 km reaches with contributing watershed areas of 0.3 to 5.0 km², field surveys provided measures of width of valley floors and volume of deposits, and radiocarbon dating of charcoal provided residence times of sediment in these deposits. Mean residence times of reaches vary between 1.1 and 2.5 kyr. Exponential distributions fit to residence times within two of the reaches imply evacuation of sediment independent of deposit ages. Power-law fits to residence times of the other two reaches imply age-dependent evacuation of deposits. Distribution shapes of residence times, and their means, do not vary systematically with contributing watershed area of mainstems. Mean width of mainstem valley floors increases with contributing watershed areas of both mainstems and their respective tributaries. Volumes of sediment stored on the valley floor increase with contributing areas of mainstems, and these volumes at tributary junctions peaked at tributary contributing areas of ~0.1 km². Percentage of basin denudation entering storage decreases with contributing area of mainstem. This decrease may be due to increasing percentages of sediment supply via fluvial transport for larger watersheds, and much, if not most, of this supply routes through the system quickly. / Graduation date: 2012

Page generated in 0.1188 seconds