• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • Tagged with
  • 14
  • 14
  • 14
  • 14
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The sedimentology and palaeoenvironmental significance of vlei sediments on the Winterberg range, South Africa

Dewey, Felicity Joy January 1989 (has links)
Palaeoenvironmental reconstruction of the late Pleistocene and Holocene geological periods for central and southern Africa has been hampered by the erratic distribution of suitable sites, incomplete and inaccurately dated sequences and the limited nature of published data. One geomorphological feature which has supplied valuable evidence for fluctuations in past environmental conditions, is the vlei or dambo. The type-site of these waterlogged features is in south central Africa, but similar features have been described on other continents. The clastic and organic sediments contained within these features are affected by, and therefore reflect to some degree, the environment under which they were formed. The characteristics of the sediments supply information as to their transport and mechanisms of deposition. From these processes, the environmental conditions at the time of vlei formation can be inferred. The environmental history of the Eastern Cape region has been considerably neglected, and is far less well understood than other countries such as Malawi, Zambia and Zimbabwe. A study site in the Winterberg Range (Eastern Cape) was selected which permitted the comparison of two vleis, the objective being to establish an accurate late Pleistocene sediment chronology for the entire plateau area. Radiocarbon dates from organic layers indicate that these sediments span the last 12 000 years BP, suggesting that organic accumulation at this site began at roughly the same time as at sites further afield. The vlei sediments are analysed in terms of their morphology, particle slze distribution, and other physical and chemical characteristics. These data facilitate the construction of detailed stratigraphic diagrams and a chronological summary of sediment accumulation, from which the period and governing processes of vlei development under changing environments may be described. It is found that the Winterberg vleis contain sediments which respond to changes in the prevailing environment. This makes these sediments useful indices from which to trace such changes during the late Pleistocene and Holocene times. These features are found to be similar in many respects to those described elsewhere in Southern Africa. The study attempts to provide greater understanding of contemporary vlei processes and emphasises the necessity of their preservation, as finite and valuable resources, by future generations
12

Sedimentology of plio-pleistocene gravel barrier deposits in the palaeo-Orange River mouth, Namibia : depositional history and diamond mineralisation

Spaggiari, Renato Igino 19 August 2013 (has links)
The largest known marine diamond placer, the Namibian mega-placer, lies along the Atlantic coast of south-western Africa from the Orange River mouth 1,000 km northwards to the Namibian-Angolan border. The most economically viable portion of the Namibian mega-placer (>75 million carats recovered at >95% gem quality) comprises onshore and offshore marine deposits that are developed within ∼100km of the Orange River outfall. For much of the Cainozoic, this long-lived fluvial system has been the main conduit transporting diamonds from kimberlitic and secondary sources in the cratonic hinterland of southern Africa to the Atlantic shelf that has been neutrally buoyant over this period. Highly energetic marine processes, driven in part, by southerly winds with an attendant northward-directed longshore drift, have generated terminal placers that are preserved both onshore and offshore. This study, through detailed field sedimentological and diamond analyses, investigates the development and mineralisation of gravel barrier deposits within the ancestral Orange River mouth area during a major ∼30 m regional transgression ('30 m Package') in the Late Pliocene. At that time, diamond supply from this fluvial conduit was minimal, yet the corresponding onshore marine deposits to the north of the Orange River mouth were significantly diamond enriched, enabling large-scale alluvial diamond mining to take place for over 75 years. Of the entire coastline of south-western Africa, the most complete accumulation of the '30 m Package' is preserved within the palaeo-Orange River mouth as barrier spit and barrier beach deposits. Arranged vertically and laterally in a 16m thick succession, these are deposits of: (1) intertidal beach, (2) lagoon and washover, (3) tidal inlet and spit recurve and (4) storm-dominated subtidal settings. These were parts of larger barrier features, the bulk of which are preserved as highstand deposits that are diamond-bearing with varying, but generally low grades (<13 stones (diamonds) per hundred tons, spht). Intertidal beach and spit recurve deposits have higher economic grades (12-13 spht) due to the energetic sieving and mobile trapping mechanisms associated with their emplacement. In contrast, the less reworked and more sandy subtidal, tidal inlet and washover deposits have un-economic grades (<2 spht). Despite these low grades, the barrier deposits have the largest average stone (diamond) size (1-2 carats/stone, cts/stn) of the entire Namibian mega-placer, given their proximity to the ancestral Orange River outfall. This study demonstrates that barrier shoreline evolution at the fluvial/marine interface was controlled by: (1) a strong and coarse fluvial sediment supply that sustained shoreline growth on a highly energetic coast, (2) accommodation space facilitating sediment preservation and (3) short-duration, high-frequency sea-level cycles superimposed on the∼30 m regional transgression, promoting hierarchal stacking of progradational deposits. During these sea-level fluctuations, diamonds were 'farmed' from older, shelf sequences in the offshore and driven landward to accumulate in '30 m Package' highstand barrier deposits. In spite of the large supply of diamonds, their retention in these deposits was poor due to an incompetent footwall of ancestral Orange River mouth sediment and the inherent cobble-boulder size of the barrier gravels. Thus the principal process controlling diamond entrapment in these barrier deposits was kinetic sieving in a coarse-grained framework. Consequently, at the marine/fluvial interface and down-drift for ∼5 km, larger diamonds (1-2 cts/stn) were retained in low-grade (<2 spht), coarse-gravel barrier shorelines. Smaller diamonds (mostly < I cts/stn) were rejected into the northward-driven littoral sediments and further size-sorted along ∼95 km of Namibian coast to accumulate in finer, high-grade beach placers (> 100 spht) where bedrock footwall promoted such high concentrations. The gravel-dominated palaeo-Orange River mouth is considered to be the ' heart' of the Namibian mega-placer, controlling sediment and diamond supply to the littoral zone further north. Although coarse gravel is retained at the river mouth, the incompetence of this highly energetic setting to trap diamonds renders it sub-economic. This ineffectiveness at the fluvial/marine interface is thus fundamental in enriching the coastal tract farther down-drift and developing highly economic coastal placers along the Atlantic coast of south-western Africa. / KMBT_363 / Adobe Acrobat 9.54 Paper Capture Plug-in
13

Sedimentary environments and provenance of the Balfour Formation (Beaufort Group) in the area between Bedford and Adelaide, Eastern Cape Province, South Africa

Oghenekome, Monica Enifome January 2012 (has links)
The research examines the sedimentary environments and provenance of the Balfour Formation of the Beaufort Group (Karoo Supergroup) in the Eastern Cape Province, South Africa. This Formation occurs in the southeastern part of the Karoo Basin. It consists of sedimentary rocks, which are an alternating siltstone, shale and mudstone succession with subordinate interbedded sandstone and subsequently intruded by Karoo dolerite in the form of sills and dykes. ithostratigraphically, the Balfour Formation is subdivided into five units namely, from the base to the top, the Oudeberg, Daggaboersnek, Barberskrans, Elandsberg and Palingkloof Members. The Balfour Formation is overlain by the Katberg Formation. This study involved field investigations in the vicinity of the towns of Bedford and Adelaide with integrated stratigraphical, sedimentological and petrological studies. A geological map was constructed after field investigations. Lithofacies of the Balfour Formation that were studied are characterised by sandstone facies (Sh, Sm, St, Sr, Sp) and fine-grained sediments (Fl or Fsm) which reflect point-bar, cut-bank, channel and floodplain deposits. Lithologically, the Oudeberg Member consists of sandstone of which some units are internally massive alternating with thin laminated siltstone and mudstone. The Daggaboersnek Member is characterised by regular, generally non-lenticular, overall stratification, in the Barberkrans Member consists of sandstone lithosomes, while the Elandsberg Member is an argillaceous unit, similar to the Daggaboersnek Member. The Palingkloof Member is composed predominantly of red mudstone that can be used to distinguish the Balfour Formation from the overlying Katberg Formation, which consists predominantly of sandstone. The stratigraphic sequence displays two fining upward megacycles of sedimentary deposits with change in the sediment supply pattern from low-sinuosity to high-sinuosity river systems which reflect both braid and meandering deposits, respectively. Sedimentary structures in the sandstone units and the provenance of the Balfour Formation indicate that these deposits were produced by rivers flowing from the southeast with minor drift towards the northwest. According to the composition of the sediments and their sequence of deposition the Formation represents a fluvial environment. Mineralogical and grain size data from the sandstones of the various members of the Balfour Formation indicate the same source area of granitic, metamorphic and older sedimentary rocks and show no significant petrographic differences. The petrographic and geochemical investigations confirmed the sandstone to be feldspathic litharenite and ultralithofeldspathic sandstone. The palaeocurrent investigation indicates the main provenance to have been situated to the southeast of the Karoo basin. Heavy-mineral concentrations within the sandstones also give an indication that the source had a transitional arc plate tectonic setting.
14

Isolation and characterisation of lignocellulose degrading bacteria from Tyume River in the Eastern Cape Province, South Africa

Tembisa, Papiyana Ayavuya January 2015 (has links)
This study focuses on the isolation and characterization of bacteria from lignocellulosic biomass obtained from the sediments of the Tyume River in Alice, Eastern Cape and to determine those bacterial isolates with good potential for modification and decomposition of lignocellulosic biomass for industrial application. Several bacterial isolates were recovered and screened for ability to degrade various lignocellulosic materials. Nine of the isolates were positive for lignocellulolytic activity. Four isolates were cellulase positive and six were xylanase positive. Moreover, one isolate (SB1) was positive for both xylanase and cellulase activities and showed the best hydrolysis zone on solid media. This isolate was then chosen as the best and identified molecularly. The 16S rDNA sequence analysis indicated that SB1 was a Bacillus cereus species. Factors affecting the cellulose and xylanase enzyme production by the organisms were studied. The organisms produced the enzymes maximally at earlier hours of incubation (12-30 hr) and optimally at acidic pH (3-5) and at moderate temperatures (35-45ºC). SB1 appears to hold promise in the decomposition of lignocellulosic wastes.

Page generated in 0.0791 seconds