• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Filtering of Segmentation Hierarchies for Improved Region-to-Region Matching

Walzer, Oliver 26 October 2011 (has links)
The representation and manipulation of visual content in a computer vision system requires a suitable abstraction of raw visual content such as pixels in an image. In this thesis, we study region-based feature representations and in particular, hierarchical segmentations because they do make no assumptions about region granularity. Hierarchical segmentations create a large feature space that increases the cost of subsequent processing in computer vision systems. We introduce a segment filter to reduce the feature space of hierarchical segmentations by identifying unique regions in the images. The filter uses appearance-based properties of the regions and the structure of the segmentation for the selection of a small set of descriptive regions. The filter works in two phases: selection with a criteria based on relative region size and a sorting based on a variational criteria. The filter is applicable to any hierarchical segmentation algorithm, in particular to bottom-up and region growing approaches. We evaluate the filter's performance against an extensive set of ground-truth regions from a dataset containing image sequences with scenes of different complexity. We demonstrate a novel region-to-region image matching approach as a possible application of our segment filter. A reduced segmentation tree is reconstructed based on the set of regions provided by the filtering. The reduction of the feature space by the segment filter simplifies our region-to-region matching approach. The correspondences between regions from two different images is established by a similarity measure. We use a modified mutual information measurement to compute the similarity of regions. The identified region correspondences are refined using the reduced segmentation tree. Our region-to-region matching approach is evaluated with an extensive set of ground-truth correspondences. This evaluation shows the large potential of both, our filtering and our matching approach.
2

Filtering of Segmentation Hierarchies for Improved Region-to-Region Matching

Walzer, Oliver 26 October 2011 (has links)
The representation and manipulation of visual content in a computer vision system requires a suitable abstraction of raw visual content such as pixels in an image. In this thesis, we study region-based feature representations and in particular, hierarchical segmentations because they do make no assumptions about region granularity. Hierarchical segmentations create a large feature space that increases the cost of subsequent processing in computer vision systems. We introduce a segment filter to reduce the feature space of hierarchical segmentations by identifying unique regions in the images. The filter uses appearance-based properties of the regions and the structure of the segmentation for the selection of a small set of descriptive regions. The filter works in two phases: selection with a criteria based on relative region size and a sorting based on a variational criteria. The filter is applicable to any hierarchical segmentation algorithm, in particular to bottom-up and region growing approaches. We evaluate the filter's performance against an extensive set of ground-truth regions from a dataset containing image sequences with scenes of different complexity. We demonstrate a novel region-to-region image matching approach as a possible application of our segment filter. A reduced segmentation tree is reconstructed based on the set of regions provided by the filtering. The reduction of the feature space by the segment filter simplifies our region-to-region matching approach. The correspondences between regions from two different images is established by a similarity measure. We use a modified mutual information measurement to compute the similarity of regions. The identified region correspondences are refined using the reduced segmentation tree. Our region-to-region matching approach is evaluated with an extensive set of ground-truth correspondences. This evaluation shows the large potential of both, our filtering and our matching approach.
3

Filtering of Segmentation Hierarchies for Improved Region-to-Region Matching

Walzer, Oliver 26 October 2011 (has links)
The representation and manipulation of visual content in a computer vision system requires a suitable abstraction of raw visual content such as pixels in an image. In this thesis, we study region-based feature representations and in particular, hierarchical segmentations because they do make no assumptions about region granularity. Hierarchical segmentations create a large feature space that increases the cost of subsequent processing in computer vision systems. We introduce a segment filter to reduce the feature space of hierarchical segmentations by identifying unique regions in the images. The filter uses appearance-based properties of the regions and the structure of the segmentation for the selection of a small set of descriptive regions. The filter works in two phases: selection with a criteria based on relative region size and a sorting based on a variational criteria. The filter is applicable to any hierarchical segmentation algorithm, in particular to bottom-up and region growing approaches. We evaluate the filter's performance against an extensive set of ground-truth regions from a dataset containing image sequences with scenes of different complexity. We demonstrate a novel region-to-region image matching approach as a possible application of our segment filter. A reduced segmentation tree is reconstructed based on the set of regions provided by the filtering. The reduction of the feature space by the segment filter simplifies our region-to-region matching approach. The correspondences between regions from two different images is established by a similarity measure. We use a modified mutual information measurement to compute the similarity of regions. The identified region correspondences are refined using the reduced segmentation tree. Our region-to-region matching approach is evaluated with an extensive set of ground-truth correspondences. This evaluation shows the large potential of both, our filtering and our matching approach.
4

Filtering of Segmentation Hierarchies for Improved Region-to-Region Matching

Walzer, Oliver January 2011 (has links)
The representation and manipulation of visual content in a computer vision system requires a suitable abstraction of raw visual content such as pixels in an image. In this thesis, we study region-based feature representations and in particular, hierarchical segmentations because they do make no assumptions about region granularity. Hierarchical segmentations create a large feature space that increases the cost of subsequent processing in computer vision systems. We introduce a segment filter to reduce the feature space of hierarchical segmentations by identifying unique regions in the images. The filter uses appearance-based properties of the regions and the structure of the segmentation for the selection of a small set of descriptive regions. The filter works in two phases: selection with a criteria based on relative region size and a sorting based on a variational criteria. The filter is applicable to any hierarchical segmentation algorithm, in particular to bottom-up and region growing approaches. We evaluate the filter's performance against an extensive set of ground-truth regions from a dataset containing image sequences with scenes of different complexity. We demonstrate a novel region-to-region image matching approach as a possible application of our segment filter. A reduced segmentation tree is reconstructed based on the set of regions provided by the filtering. The reduction of the feature space by the segment filter simplifies our region-to-region matching approach. The correspondences between regions from two different images is established by a similarity measure. We use a modified mutual information measurement to compute the similarity of regions. The identified region correspondences are refined using the reduced segmentation tree. Our region-to-region matching approach is evaluated with an extensive set of ground-truth correspondences. This evaluation shows the large potential of both, our filtering and our matching approach.

Page generated in 0.0855 seconds