• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Utilizando mapas de conectividade fuzzy no desenvolvimento de algoritmos reparadores de imagens bin?rias 3D

Cosme, ?ria Caline Saraiva 04 August 2008 (has links)
Made available in DSpace on 2014-12-17T15:47:49Z (GMT). No. of bitstreams: 1 IriaCSC.pdf: 926529 bytes, checksum: aa23848c0d07c85faded67f0781041fc (MD5) Previous issue date: 2008-08-04 / A 3D binary image is considered well-composed if, and only if, the union of the faces shared by the foreground and background voxels of the image is a surface in R3. Wellcomposed images have some desirable topological properties, which allow us to simplify and optimize algorithms that are widely used in computer graphics, computer vision and image processing. These advantages have fostered the development of algorithms to repair bi-dimensional (2D) and three-dimensional (3D) images that are not well-composed. These algorithms are known as repairing algorithms. In this dissertation, we propose two repairing algorithms, one randomized and one deterministic. Both algorithms are capable of making topological repairs in 3D binary images, producing well-composed images similar to the original images. The key idea behind both algorithms is to iteratively change the assigned color of some points in the input image from 0 (background)to 1 (foreground) until the image becomes well-composed. The points whose colors are changed by the algorithms are chosen according to their values in the fuzzy connectivity map resulting from the image segmentation process. The use of the fuzzy connectivity map ensures that a subset of points chosen by the algorithm at any given iteration is the one with the least affinity with the background among all possible choices / Uma imagem bin?ria 3D ? considerada bem-composta se, e somente se, a uni?o das faces compartilhadas pelos voxels do foreground e do background da referida imagem ? uma superf?cie em R3 . Imagens bem-compostas se beneficiam de propriedades topol?gicas desej?veis, as quais nos permitem simplificar e otimizar algoritmos amplamente usados na computa??o gr?fica, vis?o computacional e processamento de imagens. Estas vantagens t?m motivado o desenvolvimento de algoritmos para reparar imagens bi e tridimensionais que n?o sejam bem-compostas. Estes algoritmos s?o conhecidos como algoritmos reparadores. Nesta disserta??o, propomos dois algoritmos reparadores, um aleat?rio e um determin?stico. Ambos s?o capazes de fazer reparos topol?gicos em imagens bin?rias 3D, produzindo imagens bem-compostas similares ?s imagens originais. A id?ia fundamental por tr?s de ambos algoritmos ? mudar iterativamente a cor atribu?da de alguns pontos da imagem de entrada de 0 (background) para 1 (foreground) at? a imagem se tornar bem-composta. Os pontos cujas cores s?o mudadas pelos algoritmos s?o escolhidos de acordo com seus valores no mapa de conectividade fuzzy, resultante do processo de segmenta??o da imagem. O uso do mapa de conectividade fuzzy garante que um subconjunto dos pontos escolhidos pelo algoritmo em qualquer itera??o seja um com a menor afinidade com o background dentre todas as escolhas poss?veis
2

Segmenta??o fuzzy de imagens e v?deos

Oliveira, Lucas de Melo 23 February 2007 (has links)
Made available in DSpace on 2014-12-17T15:48:12Z (GMT). No. of bitstreams: 1 LucasMO.pdf: 1455032 bytes, checksum: 6bc4218b3d779cfc9915c6a2efda34f1 (MD5) Previous issue date: 2007-02-23 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / Image segmentation is the process of subdiving an image into constituent regions or objects that have similar features. In video segmentation, more than subdividing the frames in object that have similar features, there is a consistency requirement among segmentations of successive frames of the video. Fuzzy segmentation is a region growing technique that assigns to each element in an image (which may have been corrupted by noise and/or shading) a grade of membership between 0 and 1 to an object. In this work we present an application that uses a fuzzy segmentation algorithm to identify and select particles in micrographs and an extension of the algorithm to perform video segmentation. Here, we treat a video shot is treated as a three-dimensional volume with different z slices being occupied by different frames of the video shot. The volume is interactively segmented based on selected seed elements, that will determine the affinity functions based on their motion and color properties. The color information can be extracted from a specific color space or from three channels of a set of color models that are selected based on the correlation of the information from all channels. The motion information is provided into the form of dense optical flows maps. Finally, segmentation of real and synthetic videos and their application in a non-photorealistic rendering (NPR) toll are presented / Segmenta??o de imagens ? o processo que subdivide uma imagem em partes ou objetos de acordo com alguma caracter?stica comum. J? na segmenta??o de v?deos, al?m dos quadros serem divididos em fun??o de alguma caracter?stica, ? necess?rio obter uma coer?ncia temporal entre as segmenta??es de frames sucessivos do v?deo. A segmenta??o fuzzy ? uma t?cnica de segmenta??o por crescimento de regi?es que determina para cada elemento da imagem um grau de pertin?ncia (entre zero e um) indicando a confian?a de que esse elemento perten?a a um determinado objeto ou regi?o existente na imagem. O presente trabalho apresenta uma aplica??o do algoritmo de segmenta??o fuzzy de imagem, e a extens?o deste para segmentar v?deos coloridos. Nesse contexto, os v?deos s?o tratados como volumes 3D e o crescimento das regi?es ? realizado usando fun??es de afinidade que atribuem a cada pixel um valor entre zero e um para indicar o grau de pertin?ncia que esse pixel tem com os objetos segmentados. Para segmentar as seq??ncias foram utilizadas informa??es de movimento e de cor, sendo que essa ?ltima ? proveniente de um modelo de cor convencional, ou atrav?s de uma metodologia que utiliza a correla??o de Pearson para selecionar os melhores canais para realizar a segmenta??o. A informa??o de movimento foi extra?da atrav?s do c?lculo do fluxo ?ptico entre dois frames adjacentes. Por ?ltimo ? apresentada uma an?lise do comportamento do algoritmo na segmenta??o de seis v?deos e um exemplo de uma aplica??o que utiliza os mapas de segmenta??o para realizar renderiza??es que n?o sejam foto real?sticas
3

Segmenta??o fuzzy de objetos tridimensionais com propriedades texturais / Segmentation of three-dimensional objects with textural propertie

Silva Neto, Jos? Francisco da 25 September 2014 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2016-01-26T17:46:31Z No. of bitstreams: 1 JoseFranciscoDaSilvaNeto_DISSERT.pdf: 5950864 bytes, checksum: 5306cd9802b9aa1c09288d75c32ccbe2 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2016-01-28T18:00:31Z (GMT) No. of bitstreams: 1 JoseFranciscoDaSilvaNeto_DISSERT.pdf: 5950864 bytes, checksum: 5306cd9802b9aa1c09288d75c32ccbe2 (MD5) / Made available in DSpace on 2016-01-28T18:00:31Z (GMT). No. of bitstreams: 1 JoseFranciscoDaSilvaNeto_DISSERT.pdf: 5950864 bytes, checksum: 5306cd9802b9aa1c09288d75c32ccbe2 (MD5) Previous issue date: 2014-09-25 / Segmenta??o digital de imagens ? o processo de atribuir r?tulos distintos a diferentes objetos em uma imagem digital, e o algoritmo de segmenta??o fuzzy tem sido utilizado com sucesso na segmenta??o de imagens de diversas modalidades. Contudo, o algoritmo tradicional de segmenta??o fuzzy falha ao segmentar objetos que s?o caracterizados por texturas cujos padr?es n?o podem ser descritos adequadamente por simples estat?sticas computadas sobre uma ?rea restrita. Neste trabalho apresentamos uma extens?o do algoritmo de segmenta??o fuzzy que realiza segmenta??o de texturas empregando fun??es de afinidade adaptativas e o estendemos a imagens tridimensionais. Fun??es de afinidade adaptativas mudam o tamanho da ?rea em que s?o calculados os descritores da textura de acordo com as caracter?sticas da textura processada, enquanto imagens tridimensionais podem ser descritas como um conjunto finito de imagens bidimensionais. O algoritmo ent?o segmenta o volume com uma ?rea apropriada calculada para cada textura, tornando poss?vel obter boas estimativas dos volumes reais das estruturas alvo do processo de segmenta??o. Experimentos ser?o realizados com dados sint?ticos e reais obtidos no estudo de segmenta??o de tumores cerebrais em imagens m?dicas adquiridas atrav?s de exames de Resson?ncia Magn?tica / Digital image segmentation is the process of assigning distinct labels to different objects in a digital image, and the fuzzy segmentation algorithm has been used successfully in the segmentation of images from several modalities. However, the traditional fuzzy segmentation algorithm fails to segment objects that are characterized by textures whose patterns cannot be successfully described by simple statistics computed over a very restricted area. In this paper we present an extension of the fuzzy segmentation algorithm that achieves the segmentation of textures by employing adaptive affinity functions as long as we extend the algorithm to tridimensional images. The adaptive affinity functions change the size of the area where they compute the texture descriptors, according to the characteristics of the texture being processed, while three dimensional images can be described as a finite set of two-dimensional images. The algorithm then segments the volume image with an appropriate calculation area for each texture, making it possible to produce good estimates of actual volumes of the target structures of the segmentation process. We will perform experiments with synthetic and real data in applications such as segmentation of medical imaging obtained from magnetic rosonance
4

Segmenta??o Fuzzy de Texturas e V?deos

Santos, Tiago Souza dos 17 August 2012 (has links)
Made available in DSpace on 2014-12-17T15:48:04Z (GMT). No. of bitstreams: 1 TiagoSS_DISSERT.pdf: 2900373 bytes, checksum: ea7bd73351348f5c75a5bf4f337c599f (MD5) Previous issue date: 2012-08-17 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / The segmentation of an image aims to subdivide it into constituent regions or objects that have some relevant semantic content. This subdivision can also be applied to videos. However, in these cases, the objects appear in various frames that compose the videos. The task of segmenting an image becomes more complex when they are composed of objects that are defined by textural features, where the color information alone is not a good descriptor of the image. Fuzzy Segmentation is a region-growing segmentation algorithm that uses affinity functions in order to assign to each element in an image a grade of membership for each object (between 0 and 1). This work presents a modification of the Fuzzy Segmentation algorithm, for the purpose of improving the temporal and spatial complexity. The algorithm was adapted to segmenting color videos, treating them as 3D volume. In order to perform segmentation in videos, conventional color model or a hybrid model obtained by a method for choosing the best channels were used. The Fuzzy Segmentation algorithm was also applied to texture segmentation by using adaptive affinity functions defined for each object texture. Two types of affinity functions were used, one defined using the normal (or Gaussian) probability distribution and the other using the Skew Divergence. This latter, a Kullback-Leibler Divergence variation, is a measure of the difference between two probability distributions. Finally, the algorithm was tested in somes videos and also in texture mosaic images composed by images of the Brodatz album / A segmenta??o de uma imagem tem como objetivo subdividi-la em partes ou objetos constituintes que tenham algum conte?do sem?ntico relevante. Esta subdivis?o pode tamb?m ser aplicada a um v?deo, por?m, neste, os objetos est?o presentes nos diversos quadros que comp?em o v?deo. A tarefa de segmentar uma imagem torna-se mais complexa quando estas s?o compostas por objetos que contenham caracter?sticas texturais, com pouca ou nenhuma informa??o de cor. A segmenta??o difusa, do Ingl?s fuzzy, ? uma t?cnica de segmenta??o por crescimento de regi?es que determina para cada elemento da imagem um grau de pertin?ncia (entre zero e um) indicando a confian?a de que esse elemento perten?a a um determinado objeto ou regi?o existente na imagem, fazendo-se uso de fun??es de afinidade para obter esses valores de pertin?ncia. Neste trabalho ? apresentada uma modifica??o do algoritmo de segmenta??o fuzzy proposto por Carvalho [Carvalho et al. 2005], a fim de se obter melhorias na complexidade temporal e espacial. O algoritmo foi adaptado para segmentar v?deos coloridos tratando-os como volumes 3D. Para segmentar os v?deos, foram utilizadas informa??es provenientes de um modelo de cor convencional ou de um modelo h?brido obtido atrav?s de uma metodologia para a escolha dos melhores canais para realizar a segmenta??o. O algoritmo de segmenta??o fuzzy foi aplicado tamb?m na segmenta??o de texturas, fazendo-se uso de fun??es de afinidades adaptativas ?s texturas de cada objeto. Dois tipos de fun??es de afinidades foram utilizadas, uma utilizando a distribui??o normal de probabilidade, ou Gaussiana, e outra utilizando a diverg?ncia Skew. Esta ?ltima, uma varia??o da diverg?ncia de Kullback- Leibler, ? uma medida da diverg?ncia entre duas distribui??es de probabilidades. Por fim, o algoritmo foi testado com alguns v?deos e tamb?m com imagens de mosaicos de texturas criadas a partir do ?lbum de Brodatz e outros

Page generated in 0.0544 seconds