Spelling suggestions: "subject:"segmentação dde imagens"" "subject:"segmentação dee imagens""
51 |
Segmentação de imagens baseada em redes complexas e superpixels: uma aplicação ao censo de aves / Image segmentation based on complex networks and superpixels: an application to birds censusBotelho, Glenda Michele 19 September 2014 (has links)
Uma das etapas mais importantes da análise de imagens e, que conta com uma enorme quantidade de aplicações, é a segmentação. No entanto, uma boa parte das técnicas tradicionais apresenta alto custo computacional, dificultando sua aplicação em imagens de alta resolução como, por exemplo, as imagens de ninhais de aves do Pantanal que também serão analisadas neste trabalho. Diante disso, é proposta uma nova abordagem de segmentação que combina algoritmos de detecção de comunidades, pertencentes à teoria das redes complexas, com técnicas de extração de superpixels. Tal abordagem é capaz de segmentar imagens de alta resolução mantendo o compromisso entre acurácia e tempo de processamento. Além disso, como as imagens de ninhais analisadas apresentam características peculiares que podem ser mais bem tratadas por técnicas de segmentação por textura, a técnica baseada em Markov Random Fields (MRF) é proposta, como um complemento à abordagem de segmentação inicial, para realizar a identificação final das aves. Por fim, devido à importância de avaliar quantitativamente a qualidade das segmentações obtidas, um nova métrica de avaliação baseada em ground-truth foi desenvolvida, sendo de grande importância para a área. Este trabalho contribuiu para o avanço do estado da arte das técnicas de segmentação de imagens de alta resolução, aprimorando e desenvolvendo métodos baseados na combinação de redes complexas com superpixels, os quais alcançaram resultados satisfatórios com baixo tempo de processamento. Além disso, uma importante contribuição referente ao censo demográfico de aves por meio da análise de imagens aéreas de ninhais foi viabilizada por meio da aplicação da técnica de segmentação MRF. / Segmentation is one of the most important steps in image analysis with a large range of applications. However, some traditional techniques exhibit high computational costs, hindering their application in high resolution images such as the images of birds nests from Pantanal, one of Brazilian most important wetlands. Therefore, we propose a new segmentation approach that combines community detection algorithms, originated from the theory of the complex networks, with superpixels extraction techniques. This approach is capable of segmenting high resolution images while maintaining the trade-off between accuracy and processing time. Moreover, as the nest images exhibit peculiar characteristics that can be better dealt with texture segmentation techniques, the Markov Random Fields (MRF) technique is proposed, as a complement to the initial approach, to perform the final identification of the birds. Finally, due to the importance of the quantitatively evaluation of the segmentation quality, a new evaluation metric based on ground-truth was developed, being of great importance to the segmentation field. This work contributed to the state of art of high resolution images segmentation techniques, improving and developing methods based on combination of complex networks and superpixels, which generated satisfactory results within low processing time. Moreover, an important contribution for the birds census by the analysis of aerial images of birds nests was made possible by application of the MRF technique.
|
52 |
Detecção de estruturas finas e ramificadas em imagens usando campos aleatórios de Markov e informação perceptual / Detection of thin and ramified structures in images using Markov random fields and perceptual informationLeite, Talita Perciano Costa 28 August 2012 (has links)
Estruturas do tipo linha/curva (line-like, curve-like), alongadas e ramificadas são comumente encontradas nos ecossistemas que conhecemos. Na biomedicina e na biociências, por exemplo, diversas aplicações podem ser observadas. Justamente por este motivo, extrair este tipo de estrutura em imagens é um constante desafio em problemas de análise de imagens. Porém, diversas dificuldades estão envolvidas neste processo. Normalmente as características espectrais e espaciais destas estruturas podem ser muito complexas e variáveis. Especificamente as mais \"finas\" são muito frágeis a qualquer tipo de processamento realizado na imagem e torna-se muito fácil a perda de informações importantes. Outro problema bastante comum é a ausência de parte das estruturas, seja por motivo de pouca resolução, ou por problemas de aquisição, ou por casos de oclusão. Este trabalho tem por objetivo explorar, descrever e desenvolver técnicas de detecção/segmentação de estruturas finas e ramificadas. Diferentes métodos são utilizados de forma combinada, buscando uma melhor representação topológica e perceptual das estruturas e, assim, melhores resultados. Grafos são usados para a representação das estruturas. Esta estrutura de dados vem sendo utilizada com sucesso na literatura na resolução de diversos problemas em processamento e análise de imagens. Devido à fragilidade do tipo de estrutura explorado, além das técnicas de processamento de imagens, princípios de visão computacional são usados. Busca-se, desta forma, obter um melhor \"entendimento perceptual\" destas estruturas na imagem. Esta informação perceptual e informações contextuais das estruturas são utilizadas em um modelo de campos aleatórios de Markov, buscando o resultado final da detecção através de um processo de otimização. Finalmente, também propomos o uso combinado de diferentes modalidades de imagens simultaneamente. Um software é resultado da implementação do arcabouço desenvolvido e o mesmo é utilizado em duas aplicações para avaliar a abordagem proposta: extração de estradas em imagens de satélite e extração de raízes em imagens de perfis de solo. Resultados do uso da abordagem proposta na extração de estradas em imagens de satélite mostram um melhor desempenho em comparação com método existente na literatura. Além disso, a técnica de fusão proposta apresenta melhora significativa de acordo com os resultados apresentados. Resultados inéditos e promissores são apresentados na extração de raízes de plantas. / Line- curve-like, elongated and ramified structures are commonly found inside many known ecosystems. In biomedicine and biosciences, for instance, different applications can be observed. Therefore, the process to extract this kind of structure is a constant challenge in image analysus problems. However, various difficulties are involved in this process. Their spectral and spatial characteristics are usually very complex and variable. Considering specifically the thinner ones, they are very \"fragile\" to any kind of process applied to the image, and then, it becomes easy the loss of crucial data. Another very common problem is the absence of part of the structures, either because of low image resolution and image acquisition problems or because of occlusion problems. This work aims to explore, describe and develop techniques for detection/segmentation of thin and ramified structures. Different methods are used in a combined way, aiming to reach a better topological and perceptual representation of the structures and, therefore, better results. Graphs are used to represent the structures. This data structure has been successfully used in the literature for the development of solutions for many image processing and analysis problems. Because of the fragility of the kind of structures we are dealing with, some computer vision principles are used besides usual image processing techniques. In doing so, we search for a better \"perceptual understanding\" of these structures in the image. This perceptual information along with contextual information about the structures are used in a Markov random field, searching for a final detection through an optimization process. Lastly, we propose the combined use of different image modalities simultaneously. A software is produced from the implementation of the developed framework and it is used in two application in order to evaluate the proposed approach: extraction of road networks from satellite images and extraction of plant roots from soil profile images. Results using the proposed approach for the extraction of road networks show a better performance if compared with an existent method from the literature. Besides that, the proposed fusion technique presents a meaningful improvement according to the presented results. Original and promising results are presented for the extraction of plant roots from soil profile images.
|
53 |
Inferência em modelos de mistura via algoritmo EM estocástico modificado / Inference on Mixture Models via Modified Stochastic EMAssis, Raul Caram de 02 June 2017 (has links)
Apresentamos o tópico e a teoria de Modelos de Mistura de Distribuições, revendo aspectos teóricos e interpretações de tais misturas. Desenvolvemos a teoria dos modelos nos contextos de máxima verossimilhança e de inferência bayesiana. Abordamos métodos de agrupamento já existentes em ambos os contextos, com ênfase em dois métodos, o algoritmo EM estocástico no contexto de máxima verossimilhança e o Modelo de Mistura com Processos de Dirichlet no contexto bayesiano. Propomos um novo método, uma modificação do algoritmo EM Estocástico, que pode ser utilizado para estimar os parâmetros de uma mistura de componentes enquanto permite soluções com número distinto de grupos. / We present the topics and theory of Mixture Models in a context of maximum likelihood and Bayesian inferece. We approach clustering methods in both contexts, with emphasis on the stochastic EM algorithm and the Dirichlet Process Mixture Model. We propose a new method, a modified stochastic EM algorithm, which can be used to estimate the parameters of a mixture model and the number of components.
|
54 |
Fluxo do vetor gradiente e modelos deformáveis out-of-core para segmentação e imagens / Gradient vector flow and out-of-core image segmentaion by deformable modelsMarturelli, Leandro Schaeffer 07 April 2006 (has links)
Made available in DSpace on 2015-03-04T18:50:41Z (GMT). No. of bitstreams: 1
capitulo00.pdf: 149755 bytes, checksum: a2f94dd5a3a96753bd5a54659a575c98 (MD5)
Previous issue date: 2006-04-07 / Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / Main memory limitations can lower the performance of segmentation applications for large images or even make it undoable. In this work we integrate the T-Surfaces model
and Out-of-Core isosurface generation methods in a general framework for segmentation of large image volumes. T-Surfaces is a parametric deformable model based on a triangulation of the image domain, a discrete surface model and an image threshold. Isosurface generation techniques have been implemented through an Out-of-Core method that uses a kd-tree structure, called Meta-Cell technique. By using the Meta-Cell framework, we present an Out-of-Core version of a segmentation method based on T-Surfaces and isosurface extraction. The Gradient Vector Flow (GVF) is an
approach based on Partial Differential Equations. This method has been applied together with snake models for image segmentation through boundary extraction. The key idea is to use a diffusion-reaction PDE in order to generate a new external force field that makes snake models less sensitivity to initialization as well as improves the snake s ability to move into boundary concavities. In this work, we firstly review basic results about global optimization conditions of the GVF and numerical considerations of usual GVF schemes. Besides, we present an analytical analysis of the GVF and a frequency domain analysis, which gives elements to discuss the dependency from the parameter values. Also, we discuss the numerical solution of the GVF based in a SOR method. We observe that the model can be used for Multiply Connected Domains and applied an image processing approach in order to increase the GVF efficiency. / Limitações de memória principal podem diminuir a performance de aplicativos de segmentação de imagens para grandes volumes ou mesmo impedir seu funcionamento. Nesse trabalho nós integramos o modelo das T-Superfícies com um método de extração de iso-superfícies Out-of-Core formando um esquema de segmentação para imagens de grande volume. A T-Superficie é um modelo deformável paramétrico baseado em uma triangulação do domínio da imagem, um modelo discreto de superfície e um threshold da imagem. Técnicas de extração de isso-superfícies foram implementadas usando o método Out-of-Core que usa estruturas kd-tree, chamadas técnicas de Meta-Células. Usando essas técnicas, apresentamos uma versão Out-of-Core de um método de segmentação baseado nas T-Superfícies e em iso-superfícies. O fluxo do Vetor Gradiente (GVF) é um campo vetorial baseado em equações diferenciais parciais. Esse método é aplicado em conjunto com o modelo das Snakes para segmentação de imagens através de extração de contorno. A idéia principal é usar uma equação de difusão-reação para gerar um novo campo de força externa que deixa o modelo menos sensível a inicialização e melhora a habilidade das Snakes para extrair bordas com concavidades acentuadas. Nesse trabalho, primeiramente serão revistos resultados sobre condições de otimização global do GVF e feitas algumas considerações numéricas. Além disso, serão apresentadas uma análise analítica do GVF e uma análise no domínio da frequência, as quais oferecem elementos para discutir a dependência dos parâmetros do modelo. Ainda, será discutida a solução numérica do GVF baseada no método de SOR. Observamos também que o modelo pode ser estendido para Domínios Multiplamente Conexos e aplicamos uma metodologia de pré-processamento que pode tornar mais eficiente o método.
|
55 |
A computer-assisted approach to supporting taxonomical classification of freshwater green microalga images / Uma abordagem computacional para apoiar a classificação taxonômica de imagens de microalgas verdes de água doceBorges, Vinicius Ruela Pereira 18 November 2016 (has links)
The taxonomical identification of freshwater green microalgae is highly relevant problem in Phycology. In particular, the taxonomical identification of samples from the Selenastraceae family of algae is considered particularly problematic with many known inconsistencies. Biologists manually inspect and analyze microscope images of alga strains, and typically carry out several complex and time-consuming procedures that demand considerable expert knowledge. Such practical limitations motivated this investigation on the applicability of image processing, pattern recognition and visual data mining techniques to support the biologists in tasks of species identification. This thesis describes methodologies for the classification of green alga images, considering both traditional automated classification processes and also a user-assisted incremental classification process supported by Neighbor Joining tree visualizations. In this process, users can interact with the visualizations to introduce their knowledge into the classification process, e.g. by selecting suitable training sets and evaluate the results, thus steering the classification process. In order for visualization and classification to be feasible, accurate features must be obtained from the images capable of distinguishing between the different species of algae. As morphological shape properties are a fundamental property in identifying species, suitable segmentation and shape feature extraction strategies have been developed. This was particularly challenging, as different alga species share common morphological characteristics. Two segmentation methodologies are introduced, in which one relies on the level set method and the other is based on the region growing principle. Although the contour-based approach is capable of handling the uneven conditions of green alga images, its computation is time-consuming and not suitable for real time applications. A specialized formulation of the region-based methodology is proposed that considers the specific characteristics of the green alga images handled. This second formulation was shown to be more efficient than the level set approach and generates highly accurate segmentations. Once accurate alga segmentation is achieved, two descriptors are proposed that capture alga shape properties, and also an effective general shape descriptor that computes quantitative measures from two signatures associated to the shape properties. Experimental results are described that indicate that the proposed solutions can be useful to biologists conducting alga identification tasks once it reduces their effort and attains satisfactory discrimination among species. / A identificação taxonômica de algas verdes de água doce é um problema de extrema relevância na Ficologia. Identificar espécies de algas da família Selenastraceae é uma tarefa complexa devido às inconsistências existentes em sua taxonomia, reconhecida como problemática. Os biólogos analisam manualmente imagens de microscópio de cepas de algas e realizam diversos procedimentos demorados que necessitamde conhecimento sólido. Tais limitaçõesmotivaramo estudo da aplicabilidade de técnicas de processamento de imagens, reconhecimento de padrões e mineração visual de dados para apoiar os biólogos em tarefas de identificação de espécies de algas. Esta tese descreve metodologias computacionais para a classificação de imagens de algas verdes, nas abordagens tradicional e baseada em classificação visual incremental com participação do usuário. Nesta última, os usuários interagem com visualizações baseadas em árvores filogenéticas para utilizar seu conhecimento no processo de classificação, como por exemplo, na seleção de instâncias relevantes para o conjunto de treinamento de um classificador, como também na avaliação dos resultados. De forma a viabilizar o uso de classificadores e técnicas de visualização, vetores de características devem ser obtidos das imagens de algas verdes. Neste trabalho, utiliza-se extração de características de forma, uma vez que a taxonomia da família Selenastraceae considera primordialmente as características morfológicas na identificação das espécies. No entanto, a obtenção de características representativas requer que as algas sejam precisamente segmentadas das imagens. Esta é, de fato, uma tarefa altamente desafiadora considerando a baixa qualidade das imagens e a maneira pelas quais as algas se organizam nas imagens. Duas metodologias de segmentação foram introduzidas: uma baseada no método Level Set e outra baseada no algoritmo de crescimento de regiões. A primeira se mostrou robusta e consegue identificar com alta precisão as algas nas imagens, mas seu tempo de execução é alto. A outra apresenta maior precisão e é mais rápida, uma vez que as técnicas de pré-processamento são especializadas para as imagens de algas verdes. Uma vez segmentadas as algas, dois descritores para caracterizar as imagens foram propostos: um baseado em características geométricas básicas e outro que utiliza medidas quantitativas calculadas a partir das assinaturas de forma. Resultados experimentais indicaram que as soluções propostas têm um bom potencial para serem utilizadas em tarefas de identificação taxonômica de algas verdes, uma vez que reduz o esforço nos procedimentos manuais e obtém-se classificações satisfatórias.
|
56 |
Modelos de mistura de distribuições na segmentação de imagens SAR polarimétricas multi-look / Multi-look polarimetric SAR image segmentation using mixture modelsHorta, Michelle Matos 04 June 2009 (has links)
Esta tese se concentra em aplicar os modelos de mistura de distribuições na segmentação de imagens SAR polarimétricas multi-look. Dentro deste contexto, utilizou-se o algoritmo SEM em conjunto com os estimadores obtidos pelo método dos momentos para calcular as estimativas dos parâmetros do modelo de mistura das distribuições Wishart, Kp ou G0p. Cada uma destas distribuições possui parâmetros específicos que as diferem no ajuste dos dados com graus de homogeneidade variados. A distribuição Wishart descreve bem regiões com características mais homogêneas, como cultivo. Esta distribuição é muito utilizada na análise de dados SAR polarimétricos multi-look. As distribuições Kp e G0p possuem um parâmetro de rugosidade que as permitem descrever tanto regiões mais heterogêneas, como vegetação e áreas urbanas, quanto regiões homogêneas. Além dos modelos de mistura de uma única família de distribuições, também foi analisado o caso de um dicionário contendo as três famílias. Há comparações do método SEM proposto para os diferentes modelos com os métodos da literatura k-médias e EM utilizando imagens reais da banda L. O método SEM com a mistura de distribuições G0p forneceu os melhores resultados quando os outliers da imagem são desconsiderados. A distribuição G0p foi a mais flexível ao ajuste dos diferentes tipos de alvo. A distribuição Wishart foi robusta às diferentes inicializações. O método k-médias com a distribuição Wishart é robusto à segmentação de imagens contendo outliers, mas não é muito flexível à variabilidade das regiões heterogêneas. O modelo de mistura do dicionário de famílias melhora a log-verossimilhança do método SEM, mas apresenta resultados parecidos com os do modelo de mistura G0p. Para todos os tipos de inicialização e grupos, a distribuição G0p predominou no processo de seleção das distribuições do dicionário de famílias. / The main focus of this thesis consists of the application of mixture models in multi-look polarimetric SAR image segmentation. Within this context, the SEM algorithm, together with the method of moments, were applied in the estimation of the Wishart, Kp and G0p mixture model parameters. Each one of these distributions has specific parameters that allows fitting data with different degrees of homogeneity. The Wishart distribution is suitable for modeling homogeneous regions, like crop fields for example. This distribution is widely used in multi-look polarimetric SAR data analysis. The distributions Kp and G0p have a roughness parameter that allows them to describe both heterogeneous regions, as vegetation and urban areas, and homogeneous regions. Besides adopting mixture models of a single family of distributions, the use of a dictionary with all the three family of distributions was proposed and analyzed. Also, a comparison between the performance of the proposed SEM method, considering the different models in real L-band images and two widely known techniques described in literature (k-means and EM algorithms), are shown and discussed. The proposed SEM method, considering a G0p mixture model combined with a outlier removal stage, provided the best classication results. The G0p distribution was the most flexible for fitting the different kinds of data. The Wishart distribution was robust for different initializations. The k-means algorithm with Wishart distribution is robust for segmentation of SAR images containing outliers, but it is not so flexible to variabilities in heterogeneous regions. The mixture model considering the dictionary of distributions improves the SEM method log-likelihood, but presents similar results to those of G0p mixture model. For all types of initializations and clusters, the G0p prevailed in the distribution selection process of the dictionary of distributions.
|
57 |
Detecção de faces humanas em imagens coloridas utilizando redes neurais artificiais / Detection of human faces in color images using artificial neural networksGouveia, Wellington da Rocha 28 January 2010 (has links)
A tarefa de encontrar faces em imagens é extremamente complexa, pois pode ocorrer variação de luminosidade, fundos extremamente complexos e objetos que podem se sobrepor parcialmente à face que será localizada, entre outros problemas. Com o avanço na área de visão computacional técnicas mais recentes de processamento de imagens e inteligência artificial têm sido combinadas para desenvolver algoritmos mais eficientes para a tarefa de detecção de faces. Este trabalho apresenta uma metodologia de visão computacional que utiliza redes neurais MLP (Perceptron Multicamadas) para segmentar a cor da pele e a textura da face, de outros objetos presentes em uma imagem de fundo complexo. A imagem resultante é dividida em regiões, e para cada região são extraídas características que são aplicadas em outra rede neural MLP para identificar se naquela região contem face ou não. Para avaliação do software implementado foram utilizados dois banco de imagens, um com imagens padronizadas (Banco AR) e outro banco com imagens adquiridas na Internet contendo faces com diferentes tons de pele e fundo complexo. Os resultados finais obtidos foram de 83% de faces detectadas para o banco de imagens da Internet e 88% para o Banco AR, evidenciando melhores resultados para as imagens deste banco, pelo fato de serem padronizadas, não conterem faces inclinadas e fundo complexo. A etapa de segmentação apesar de reduzir a quantidade de informação a ser processada para os demais módulos foi a que contribuiu para o maior número de falsos negativos. / The task of finding faces in images is extremely complex, as there is variation in brightness, backgrounds and highly complex objects that may overlap partially in the face to be found, among other problems. With the advancement in the field of computer vision techniques latest image processing and artificial intelligence have been combined to develop more efficient algorithms for the task of face detection. This work presents a methodology for computer vision using neural networks MLP (Multilayer Perceptron) to segment the skin color and texture of the face, from other objects present in a complex background image. The resulting image is divided into regions and from each region are extracted features that are applied in other MLP neural network to identify whether this region contains the face or not. To evaluate the software two sets of images were used, images with a standard database (AR) and another database with images acquired from the Internet, containing faces with different skin tones and complex background. The final results were 83% of faces detected in the internet database of images and 88% for the database AR. These better results for the database AR is due to the fact that they are standardized, are not rotated and do not contain complex background. The segmentation step, despite reducing the amount of information being processed for the other modules contributed to the higher number of false negatives.
|
58 |
Contribuição ao estudo da vegetação da porção leste da Ilha de Marajó / Contribution to the vegetation\'s study of the eastern portion of Marajo IslandGamba, Carlos Tadeu de Carvalho 11 February 2010 (has links)
A manutenção dos ecossistemas florestais da Amazônia é, sem dúvida, de suma importância para preservação da biodiversidade do planeta. Utilizar e avaliar dados de última geração que forneçam informações sobre estes ecossistemas torna-se então fundamental para o gerenciamento dos mesmos. Projeto pioneiro realizado na década de 1970, o RADAM teve como objetivo levantar, a partir de imagens de RADAR obtidas na banda X, informações sobre os recursos naturais da Amazônia. O avanço dos sistemas sensores baseados nas tecnologias de RADAR (Radio Detection and Ranging), com a introdução de plataformas capazes de imagear a superfície em comprimentos de onda maiores e em mais de uma polarização, trouxe uma nova perspectiva no campo de estudo destes recursos. Este trabalho emergiu a partir da constatação da necessidade, e possibilidade, de se obter informações mais precisas e atualizadas sobre o ambiente amazônico, levando em conta, inclusive, a velocidade das transformações que recaem sobre essa região. O objetivo primário do estudo foi analisar o potencial das imagens produzidas pelos radares de abertura sintética (SAR) nas bandas L e nas polarizações HH, HV e VV, na avaliação de tipologias vegetais da porção leste da Ilha de Marajó. Entendemos que essa pequena parcela do ambiente amazônico nos cede uma chave de padrões de classificação que podem ser replicados em outras regiões da Amazônia Legal, ou mesmo, em novos projetos de mapeamento similares ao RADAM. Os resultados obtidos por meio de análises das imagens de radar e através do estudo de diversas propostas de classificação fitogeográfica, evidenciaram um alto potencial de utilização destes recursos, bem como a possibilidade de avançarmos na escala de análise, produzindo mapeamentos de maior detalhe e mais abrangentes do ponto de vista das classes vegetais. A tecnologia para incrementar o mapeamento da região amazônica, de forma mais criteriosa e precisa, já existe há algum tempo e está disponível às instituições nacionais. Dar esse salto, importantíssimo para o conhecimento, preservação e monitoramento daquele que é considerado hoje o bioma mais importante do mundo, só depende de uma mudança nos critérios e de uma atualização das ferramentas usadas até o momento. / The maintenance of forest ecosystems in the Amazon is undoubtedly of great importance to the preservation of the planets biodiversity. The utilization and analysis of last generation data about these ecosystems become fundamental for their management. A pioneer project in the 1970 decade, the RADAM project had the objective of gathering information about Amazon natural resources from RADAR images obtained in the band X. The progress in sensor systems based on RADAR (Radio Detection and Ranging) technologies, with the introduction of platforms capable of imaging the surface in bigger wavelengths and in more than one polarization, brought a new perspective in the study area of these resources. This work emerged from the constatation of the need and possibility of obtaining more precise and updated information about the Amazon environment, inclusive considering the speed of the transformations that occur in this region. The primary objective of the study was to analyze the potential of the produced images by Synthetic Aperture Radars (SAR) in bands L and in polarizations HH, HV and VV, for the evaluation of vegetal typology of the east portion of Marajo Island. We understand that this little portion of the Amazon environment gives us a key of classification patterns that can be reapplied in other regions of Legal Amazon, or even in new mapping projects similar to RADAM. The results obtained from radar images analysis and through the study of several propositions for phytogeographic classification evidenced a high potential for the utilization of these resources, as well as the possibility of making progresses in the analysis scale, producing more detailed and comprehensive mappings from the point of view of vegetal classes. The technology to improve the mapping of Amazon region in a more criterious and precise manner has already existed for some time now and is available for national institutions. Making this leap, greatly important to knowledge, preservation and monitoring of what is considered the most important biome in the world only depends on a change in criteria and an updating of the tools that have been used up to this moment.
|
59 |
Detecção de faces humanas em imagens coloridas utilizando redes neurais artificiais / Detection of human faces in color images using artificial neural networksWellington da Rocha Gouveia 28 January 2010 (has links)
A tarefa de encontrar faces em imagens é extremamente complexa, pois pode ocorrer variação de luminosidade, fundos extremamente complexos e objetos que podem se sobrepor parcialmente à face que será localizada, entre outros problemas. Com o avanço na área de visão computacional técnicas mais recentes de processamento de imagens e inteligência artificial têm sido combinadas para desenvolver algoritmos mais eficientes para a tarefa de detecção de faces. Este trabalho apresenta uma metodologia de visão computacional que utiliza redes neurais MLP (Perceptron Multicamadas) para segmentar a cor da pele e a textura da face, de outros objetos presentes em uma imagem de fundo complexo. A imagem resultante é dividida em regiões, e para cada região são extraídas características que são aplicadas em outra rede neural MLP para identificar se naquela região contem face ou não. Para avaliação do software implementado foram utilizados dois banco de imagens, um com imagens padronizadas (Banco AR) e outro banco com imagens adquiridas na Internet contendo faces com diferentes tons de pele e fundo complexo. Os resultados finais obtidos foram de 83% de faces detectadas para o banco de imagens da Internet e 88% para o Banco AR, evidenciando melhores resultados para as imagens deste banco, pelo fato de serem padronizadas, não conterem faces inclinadas e fundo complexo. A etapa de segmentação apesar de reduzir a quantidade de informação a ser processada para os demais módulos foi a que contribuiu para o maior número de falsos negativos. / The task of finding faces in images is extremely complex, as there is variation in brightness, backgrounds and highly complex objects that may overlap partially in the face to be found, among other problems. With the advancement in the field of computer vision techniques latest image processing and artificial intelligence have been combined to develop more efficient algorithms for the task of face detection. This work presents a methodology for computer vision using neural networks MLP (Multilayer Perceptron) to segment the skin color and texture of the face, from other objects present in a complex background image. The resulting image is divided into regions and from each region are extracted features that are applied in other MLP neural network to identify whether this region contains the face or not. To evaluate the software two sets of images were used, images with a standard database (AR) and another database with images acquired from the Internet, containing faces with different skin tones and complex background. The final results were 83% of faces detected in the internet database of images and 88% for the database AR. These better results for the database AR is due to the fact that they are standardized, are not rotated and do not contain complex background. The segmentation step, despite reducing the amount of information being processed for the other modules contributed to the higher number of false negatives.
|
60 |
Uma proposta de estruturação e integração de processamento de cores em sistemas artificiais de visão. / A proposal for structuration and integration of color processing in artifical vision systems.Moreira, Jander 05 July 1999 (has links)
Esta tese descreve uma abordagem para a utilização da informação de cores no sistema de visão artificial com inspiração biológica denominada Cyvis-1. Considerando-se que grande parte da literatura sobre segmentação de imagens se refere a imagens em níveis de cinza, informações cromáticas na segmentação permanecem uma área que ainda deve ser mais bem explorada e para a qual se direcionou o interesse da presente pesquisa. Neste trabalho, o subsistema de cor do Cyvis-1 é definido, mantendo-se o vínculo com os princípios que inspiram o sistema de visão como um todo: hierarquia, modularidade, especialização do processamento, integração em vários níveis, representação efetiva da informação visual e integração com conhecimento de nível alto. O subsistema de cor se insere neste escopo, propondo uma técnica para segmentação de imagens coloridas baseada em mapas auto-organizáveis para a classificação dos pontos da imagem. A segmentação incorpora a determinação do número de classes sem supervisão, tornando o processo mais independente de intervenção humana. Por este processo de segmentação, são produzidos mapas das regiões encontradas e um mapa de bordas, derivado das regiões. Uma segunda proposta do trabalho é um estudo comparativo do desempenho de técnicas de segmentação por bordas. A comparação é feita em relação a um mapa de bordas de referência e o comportamento de várias técnicas é analisado segundo um conjunto de atributos locais baseados em contrastes de intensidade e cor. Derivada desta comparação, propõe-se também uma combinação para a geração de um mapa de bordas a partir da seleção das técnicas segundo seus desempenhos locais. Finalmente, integrando os aspectos anteriores, é proposta urna estruturação do módulo de cor, adicionalmente com a aquisição de imagens, a análise de formas e o reconhecimento de objetos poliédricos. Há, neste contexto, a integração ao módulo de estéreo, que proporciona o cálculo de dados tridimensionais, essenciais para o reconhecimento dos objetos. Para cada parte deste trabalho são propostas formas de avaliação para a validação dos resultados, demonstrando e caracterizando a eficiência e as limitações de cada uma. / This thesis describes an approach to color information processing in the biologically-inspired artificial vision system named Cyvis-1. Considering that most of the current literature in image segmentation deals with gray level images, color information remains an incipient area, which has motivated this research. This work defines the color subsystem within the Cyvis-1 underlying phylosophy, whose main principles include hierarchy, modularity, processing specialization, multilevel integration, effective representation of visual information, and high-level knowledge integration. The color subsystem is then introduced according to this framework, with a proposal of a segmentation technique based on self-organizing maps. The number of regions in the image is achieved through a unsupervised clustering approach, so no human interaction is needed. Such segmentation technique produces region oriented representation of the classes, which are used to derive an edge map. Another main topic in this work is a comparative study of the edge maps produced by several edge-oriented segmentation techniques. A reference edge map is used as standard segmentation, to which other edge maps are compared. Such analysis is carried out by means of local attributes (local gray level and \"color\" contrasts). As a consequence of the comparison, a combination edge map is also proposed, based on the conditional selection of techniques considering the local attributes. Finally, the integration of two above topics is proposed, which is characterized by the design of the color subsystem of Cyvis-1, altogether with the modules for image acquisition, shape analysis and polyhedral object recognition. In such a context, the integration with the stereo subsystem is accomplished, allowing the evaluation of the three-dimensional data needed for object recognition. Assessment and validation of the three proposals were carried out, providing the means for analyzing their efficiency and limitations.
|
Page generated in 0.0831 seconds