• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Poly(acrylic acid) interpolymer complexation: use of a fluorescence time resolved anisotropy as a poly(acrylamide) probe

Swift, Thomas, Swanson, L., Rimmer, Stephen 30 October 2014 (has links)
Yes / A low concentration poly(acrylamide) sensor has been developed which uses the segmental mobility of another polymer probe with a covalently attached fluorescent marker. Interpolymer complexation with poly(acrylic acid) leads to reduced segmental mobility which can be used to determine the concentration of polymer in solution. This technique could be useful in detecting the runoff of polymer dispersants and flocculants in fresh water supplies following water purification processes. / Funding for the research was kindly provided by the Engineering and Physical Sciences Research Council (EPSRC).
2

Segmental mobility studies of poly(N-isopropyl acrylamide) interactions with gold nanoparticles and its use as a thermally driven trapping system

Swift, Thomas, Rehman, K., Surtees, Alexander P.H., Hoskins, Richard, Hickey, Stephen G. 02 May 2018 (has links)
Yes / Thermal desolvation of poly(N‐isopropylacrylamide) (PNIPAM) in the presence of a low concentration of gold nanoparticles incorporates the nanoparticles resulting in suspended aggregates. By covalently incorporating <1% acenaphthylene into the polymerization feed this copolymer is enabled to be used as a model to study the segmental mobility of the PNIPAM backbone in response to gold nanoparticles both below and above the desolvation temperature, showing that there is a physical conformational rearrangement of the soluble polymer at ultralow nanoparticle loadings, indicating low affinity interactions with the nanoparticles. Thermal desolvation is capable of extracting >99.9% of the nanoparticles from their solutions and hence demonstrates that poly(N‐isopropylacrylamide) can act as an excellent scrubbing system to remove metallic nanomaterial pollutants from solution. / Science Foundation Ireland's ETS. Grant Number: 11/W.I/12085; MRC. Grant Number: MR/N501888/2

Page generated in 0.2106 seconds