• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure analysis and lesion detection from retinal fundus images

Gonzalez, Ana Guadalupe Salazar January 2011 (has links)
Ocular pathology is one of the main health problems worldwide. The number of people with retinopathy symptoms has increased considerably in recent years. Early adequate treatment has demonstrated to be effective to avoid the loss of the vision. The analysis of fundus images is a non intrusive option for periodical retinal screening. Different models designed for the analysis of retinal images are based on supervised methods, which require of hand labelled images and processing time as part of the training stage. On the other hand most of the methods have been designed under the basis of specific characteristics of the retinal images (e.g. field of view, resolution). This compromises its performance to a reduce group of retinal image with similar features. For these reasons an unsupervised model for the analysis of retinal image is required, a model that can work without human supervision or interaction. And that is able to perform on retinal images with different characteristics. In this research, we have worked on the development of this type of model. The system locates the eye structures (e.g. optic disc and blood vessels) as first step. Later, these structures are masked out from the retinal image in order to create a clear field to perform the lesion detection. We have selected the Graph Cut technique as a base to design the retinal structures segmentation methods. This selection allows incorporating prior knowledge to constraint the searching for the optimal segmentation. Different link weight assignments were formulated in order to attend the specific needs of the retinal structures (e.g. shape). This research project has put to work together the fields of image processing and ophthalmology to create a novel system that contribute significantly to the state of the art in medical image analysis. This new knowledge provides a new alternative to address the analysis of medical images and opens a new panorama for researchers exploring this research area.
2

Detecção de faces humanas em imagens coloridas utilizando redes neurais artificiais / Detection of human faces in color images using artificial neural networks

Gouveia, Wellington da Rocha 28 January 2010 (has links)
A tarefa de encontrar faces em imagens é extremamente complexa, pois pode ocorrer variação de luminosidade, fundos extremamente complexos e objetos que podem se sobrepor parcialmente à face que será localizada, entre outros problemas. Com o avanço na área de visão computacional técnicas mais recentes de processamento de imagens e inteligência artificial têm sido combinadas para desenvolver algoritmos mais eficientes para a tarefa de detecção de faces. Este trabalho apresenta uma metodologia de visão computacional que utiliza redes neurais MLP (Perceptron Multicamadas) para segmentar a cor da pele e a textura da face, de outros objetos presentes em uma imagem de fundo complexo. A imagem resultante é dividida em regiões, e para cada região são extraídas características que são aplicadas em outra rede neural MLP para identificar se naquela região contem face ou não. Para avaliação do software implementado foram utilizados dois banco de imagens, um com imagens padronizadas (Banco AR) e outro banco com imagens adquiridas na Internet contendo faces com diferentes tons de pele e fundo complexo. Os resultados finais obtidos foram de 83% de faces detectadas para o banco de imagens da Internet e 88% para o Banco AR, evidenciando melhores resultados para as imagens deste banco, pelo fato de serem padronizadas, não conterem faces inclinadas e fundo complexo. A etapa de segmentação apesar de reduzir a quantidade de informação a ser processada para os demais módulos foi a que contribuiu para o maior número de falsos negativos. / The task of finding faces in images is extremely complex, as there is variation in brightness, backgrounds and highly complex objects that may overlap partially in the face to be found, among other problems. With the advancement in the field of computer vision techniques latest image processing and artificial intelligence have been combined to develop more efficient algorithms for the task of face detection. This work presents a methodology for computer vision using neural networks MLP (Multilayer Perceptron) to segment the skin color and texture of the face, from other objects present in a complex background image. The resulting image is divided into regions and from each region are extracted features that are applied in other MLP neural network to identify whether this region contains the face or not. To evaluate the software two sets of images were used, images with a standard database (AR) and another database with images acquired from the Internet, containing faces with different skin tones and complex background. The final results were 83% of faces detected in the internet database of images and 88% for the database AR. These better results for the database AR is due to the fact that they are standardized, are not rotated and do not contain complex background. The segmentation step, despite reducing the amount of information being processed for the other modules contributed to the higher number of false negatives.
3

Detecção de faces humanas em imagens coloridas utilizando redes neurais artificiais / Detection of human faces in color images using artificial neural networks

Wellington da Rocha Gouveia 28 January 2010 (has links)
A tarefa de encontrar faces em imagens é extremamente complexa, pois pode ocorrer variação de luminosidade, fundos extremamente complexos e objetos que podem se sobrepor parcialmente à face que será localizada, entre outros problemas. Com o avanço na área de visão computacional técnicas mais recentes de processamento de imagens e inteligência artificial têm sido combinadas para desenvolver algoritmos mais eficientes para a tarefa de detecção de faces. Este trabalho apresenta uma metodologia de visão computacional que utiliza redes neurais MLP (Perceptron Multicamadas) para segmentar a cor da pele e a textura da face, de outros objetos presentes em uma imagem de fundo complexo. A imagem resultante é dividida em regiões, e para cada região são extraídas características que são aplicadas em outra rede neural MLP para identificar se naquela região contem face ou não. Para avaliação do software implementado foram utilizados dois banco de imagens, um com imagens padronizadas (Banco AR) e outro banco com imagens adquiridas na Internet contendo faces com diferentes tons de pele e fundo complexo. Os resultados finais obtidos foram de 83% de faces detectadas para o banco de imagens da Internet e 88% para o Banco AR, evidenciando melhores resultados para as imagens deste banco, pelo fato de serem padronizadas, não conterem faces inclinadas e fundo complexo. A etapa de segmentação apesar de reduzir a quantidade de informação a ser processada para os demais módulos foi a que contribuiu para o maior número de falsos negativos. / The task of finding faces in images is extremely complex, as there is variation in brightness, backgrounds and highly complex objects that may overlap partially in the face to be found, among other problems. With the advancement in the field of computer vision techniques latest image processing and artificial intelligence have been combined to develop more efficient algorithms for the task of face detection. This work presents a methodology for computer vision using neural networks MLP (Multilayer Perceptron) to segment the skin color and texture of the face, from other objects present in a complex background image. The resulting image is divided into regions and from each region are extracted features that are applied in other MLP neural network to identify whether this region contains the face or not. To evaluate the software two sets of images were used, images with a standard database (AR) and another database with images acquired from the Internet, containing faces with different skin tones and complex background. The final results were 83% of faces detected in the internet database of images and 88% for the database AR. These better results for the database AR is due to the fact that they are standardized, are not rotated and do not contain complex background. The segmentation step, despite reducing the amount of information being processed for the other modules contributed to the higher number of false negatives.
4

Automatická klasifikace obrazů kolonií na Petriho miskách / Automatic classification of Petri dish colony images

Herodes, Jakub January 2017 (has links)
The thesis describe issue of segmentation and classification of Petri dishes colored images. There is proposed a segmentation method that extracts positions of cells from the image. Another techniques focues on classification to groups according to the parameters obtained from images. Reliability of each optimalized algorithm is tested on database containing 250 colored images received from company BioVendor Instruents a.s.
5

Methods for Text Segmentation from Scene Images

Kumar, Deepak January 2014 (has links) (PDF)
Recognition of text from camera-captured scene/born-digital images help in the development of aids for the blind, unmanned navigation systems and spam filters. However, text in such images is not confined to any page layout, and its location within in the image is random in nature. In addition, motion blur, non-uniform illumination, skew, occlusion and scale-based degradations increase the complexity in locating and recognizing the text in a scene/born-digital image. Text localization and segmentation techniques are proposed for the born-digital image data set. The proposed OTCYMIST technique won the first place and placed in the third position for its performance on the text segmentation task in ICDAR 2011 and ICDAR 2013 robust reading competitions for born-digital image data set, respectively. Here, Otsu’s binarization and Canny edge detection are separately carried out on the three colour planes of the image. Connected components (CC’s) obtained from the segmented image are pruned based on thresholds applied on their area and aspect ratio. CC’s with sufficient edge pixels are retained. The centroids of the individual CC’s are used as nodes of a graph. A minimum spanning tree is built using these nodes of the graph. Long edges are broken from the minimum spanning tree of the graph. Pairwise height ratio is used to remove likely non-text components. CC’s are grouped based on their proximity in the horizontal direction to generate bounding boxes (BB’s) of text strings. Overlapping BB’s are removed using an overlap area threshold. Non-overlapping and minimally overlapping BB’s are used for text segmentation. These BB’s are split vertically to localize text at the word level. A word cropped from a document image can easily be recognized using a traditional optical character recognition (OCR) engine. However, recognizing a word, obtained by manually cropping a scene/born-digital image, is not trivial. Existing OCR engines do not handle these kinds of scene word images effectively. Our intention is to first segment the word image and then pass it to the existing OCR engines for recognition. In two aspects, it is advantageous: it avoids building a character classifier from scratch and reduces the word recognition task to a word segmentation task. Here, we propose two bottom-up approaches for the task of word segmentation. These approaches choose different features at the initial stage of segmentation. Power-law transform (PLT) was applied to the pixels of the gray scale born-digital images to non-linearly modify the histogram. The recognition rate achieved on born-digital word images is 82.9%, which is 20% more than the top performing entry (61.5%) in ICDAR 2011 robust reading competition. In addition, we explored applying PLT to the colour planes such as red, green, blue, intensity and lightness plane by varying the gamma value. We call this technique as Nonlinear enhancement and selection of plane (NESP) for optimal segmentation, which is an improvement over PLT. NESP chooses a particular plane with a proper gamma value based on Fisher discrimination factor. The recognition rate is 72.8% for scene images of ICDAR 2011 robust reading competition, which is 30% higher than the best entry (41.2%). The recognition rate is 81.7% and 65.9% for born-digital and scene images of ICDAR 2013 robust reading competition, respectively, using NESP. Another technique, midline analysis and propagation of segmentation (MAPS), has also been proposed. Here, the middle row pixels of the gray scale image are first segmented and the statistics of the segmented pixels are used to assign text and non-text labels to the rest of the image pixels using min-cut method. Gaussian model is fitted on the middle row segmented pixels before the assignment of other pixels. In MAPS, we assume the middle row pixels are least affected by any of the degradations. This assumption is validated by the good word recognition rate of 71.7% on ICDAR 2011 robust reading competition for scene images. The recognition rate is 83.8% and 66.0% for born-digital and scene images of ICDAR 2013 robust reading competition, respectively, using MAPS. The best reported results for ICDAR 2003 word images is 61.1% using custom lexicons containing the list of test words. On the other hand, NESP and MAPS achieve 66.2% and 64.5% for ICDAR 2003 word images without using any lexicon. By using similar custom lexicon, the recognition rates for ICDAR 2003 word images go up to 74.9% and 74.2% for NESP and MAPS methods, respectively. In place of passing an image segmented by a method, manually segmented word image is submitted to an OCR engine for benchmarking maximum possible recognition rate for each database. The recognition rates of the proposed methods and the benchmark results are reported on the seven publicly available word image data sets and compared with these of reported results in the literature. Since no good Kannada OCR is available, a classifier is designed to recognize Kannada characters and words from Chars74k data set and our own image collection, respectively. Discrete cosine transform (DCT) and block DCT are used as features to train separate classifiers. Kannada words are segmented using the same techniques (MAPS and NESP) and further segmented into groups of components, since a Kannada character may be represented by a single component or a group of components in an image. The recognition rate on Kannada words is reported for different features with and without the use of a lexicon. The obtained recognition performance for Kannada character recognition (11.4%) is three times the best performance (3.5%) reported in the literature.

Page generated in 0.1024 seconds