• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 10
  • 10
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SOME SEGREGATION EFFECTS IN DIRECTIONAL SOLIDIFICATION.

Wang, Wen-Chang Scott. January 1983 (has links)
No description available.
2

The effect of antimony on segregation during dendritic solidification in a cast modified 4720 alloy /

Coffey, Melvin W. January 1985 (has links)
Thesis (M.S.)--Oregon Graduate Center, 1985.
3

Stability of bimetallic surfaces experimental and theoretical study of adsorbate-induced segregation /

Menning, Carl Andrew. January 2009 (has links)
Thesis (Ph.D.)--University of Delaware, 2009. / Principal faculty advisor: Jingguang G. Chen, Dept. of Chemical Engineering. Includes bibliographical references.
4

Segregation and structure in continuously cast high carbon steel

Sung, Pil Kyung, 1961- January 1989 (has links)
After hot rolling, the presense of segregation in the center of wire-rod can lead to a nonuniform transformation, resulting in bands of martensite in the microstructure. This is considered to be a defect, called center-martensite, because it can cause cracks and breaks during wire drawing. To identify the mechanism for the formation of center-martensite in wire-rod, the structure, macrosegregation and microsegregation in unworked billets were characterized. Based on measurements of secondary dendrite arm spacings, cooling rates during solidification were estimated. It appears that the macrosegregation of carbon and manganese in the billets manifests itself as the microsegregation in wire-rod, which is an agent in forming the center-martensite. Thus, electromagnetic stirring is proposed as a means to reduce the macrosegregation in the billet and, thereby, reduce the occurrence of center-martensite in wire-rod.
5

Experiments and analyses for flow through partially solidified alloys.

Ganesan, Sankaranarayanan January 1990 (has links)
The equation for the conservation of momentum in the mushy zone during solidification is derived using the volume averaging technique. The conditions under which the momentum equation reduces to Darcy's law are elucidated. Permeabilities for flow of interdendritic liquid in Al-Cu alloys with equiaxial structures are measured using a simple, cost-effective permeameter. Center-to-center distance between grains (180 μm to 450 μm), specific surface (3.21 x 10⁻² μm⁻¹ to 3.095 x 10⁻¹ μm⁻¹), and volume fraction liquid (0.166 to 0.434) are the structural parameters studied in this investigation. Permeability in Al-Cu alloys with equiaxial grains is structure sensitive. For example, permeabilities for globular structures (nondendritic) are approximately one order of magnitude greater than permeabilities for the dendritic-globular structures, when the volume fraction liquid is approximately 0.3. To better understand the dependence of permeability on structure morphology, structure evolution during the permeability testing was studied in isothermal coarsening experiments. Dimensionless permeabilities based on specific surface, and center-to-center distance between grains are presented along with the theoretical results for flow through different arrays (simple cubic, body-centered cubic and face-centered cubic) of uniform spheres. With dimensionless permeability defined as KSᵥ², where Sᵥ is the specific surface of the solid, the empirical data compare reasonably well with theoretical curves for flow through arrays of uniform spheres. Numerical experiments are performed to obtain permeabilities for flow parallel to primary dendrites in columnar structures with high volume-fraction liquid where physical experiments may fail. The results of numerical experiments are presented along with the analytical results for flow parallel to cylinders arranged in square and triangular packing, analytical results for flow through periodically constricted tubes and the available empirical data. The results indicate that there is a transition in the behavior of permeability in the neighborhood of volume fraction liquid equal to 0.65.
6

Macrosegregation in electroslag remelted ingots

Kou, Sindo January 1978 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1978. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Vita. / Includes bibliographical references. / by Sindo Kou. / Ph.D.
7

Chromium-free consumable for welding stainless steel corrosion perspective /

Kim, Yeong Ho. January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Available online via OhioLINK's ETD Center; full text release delayed at author's request until 2006 Nov 29
8

Convection and segregation phenomena in low Prandtl number melt growth systems : a quantitative experimental and theoretical approach

Martin, Edward Paul. January 1977 (has links)
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 1977 / Vita. / Includes bibliographical references. / by Edward Paul Martin, Jr. / Ph. D. / Ph. D. Massachusetts Institute of Technology, Department of Materials Science and Engineering
9

Atomic-scale calculations of interfacial structures and their properties in electronic materials

Liang, Tao, January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains xvi, 136 p.; also includes graphics (some col.). Includes bibliographical references (p. 125-136). Available online via OhioLINK's ETD Center
10

Modeling of Transport Phenomena and Macrosegregation during Directional Solidification of Alloys

Sajja, Udaya Kumar 30 April 2011 (has links)
This dissertation mainly focuses on the development of new numerical models to simulate transport phenomena and predict the occurrence of macrosegregation defects known as freckles in directional solidification processes. Macrosegregation models that include double diffusive convection are very complex and require the simultaneous solution of the conservation equations of mass, momentum, energy and solute concentration. The penalty method and Galerkin Least Squares (GLS) method are the most commonly employed methods for predicting the interdendritic flow of the liquid melt during the solidification processes. The solidification models employing these methods are computationally inefficient since they are based on the formulations that require the coupled solution to velocity components in the momentum equation Motivated by the inefficiency of the previous solidification models, this work presents three different numerical algorithms for the solution of the volume averaged conservation equations. First, a semi explicit formulation of the projection method that allows the decoupled solution of the velocity components while maintaining the coupling between body force and pressure gradient is presented. This method has been implemented with a standard Galerkin finite element formulation based on bi-linear elements in two dimensions and tri-linear elements in three dimensions. This formulation is shown to be robust and very efficient in terms of both the memory and the computational time required for the macrosegregation computations. The second area addressed in this work is the use of adaptive meshing with linear triangular elements together with the Galerkin finite element method and the projection formulation. An unstructured triangular mesh generator is integrated with the solidification model to produce the solution adapted meshes. Strategies to tackle the different length scales involved in macrosegregation modeling are presented. Meshless element free Galerkin method has been investigated to simulate the solidification processes to alleviate the difficulties associated with the dependence on the mesh. This method is combined with the fractional step method to predict macrosegregation. The performance of these three numerical algorithms has been analyzed and two and three dimensional simulations showing the directional solidification of binary Pb-Sn and multicomponent Ni base alloys are presented.

Page generated in 0.1038 seconds