• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1142
  • 197
  • 177
  • 127
  • 55
  • 32
  • 30
  • 14
  • 14
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • Tagged with
  • 2220
  • 337
  • 335
  • 285
  • 237
  • 216
  • 211
  • 199
  • 188
  • 184
  • 168
  • 160
  • 154
  • 151
  • 135
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Integrated Reservoir Characterization: Offshore Louisiana, Grand Isle Blocks 32 & 33

Casey, Michael Chase 2011 May 1900 (has links)
This thesis integrated geology, geophysics, and petroleum engineering data to build a detailed reservoir characterization models for three gas pay sands in the Grand Isle 33 & 43 fields, offshore Louisiana. The reservoirs are Late Miocene in age and include the upper (PM), middle (QH), and lower (RD) sands. The reservoir models address the stratigraphy of the upper (PM) sand and help delineate the lower (RD) reservoir. In addition, this research addresses the partially depleted QH-2 reservoir compartment. The detailed models were constructed by integrating seismic, well log, and production data. These detailed models can help locate recoverable oil and gas that has been left behind. The upper PM model further delineated that the PM sand has several areas that are shaled-out effectively creating a flow barrier within reservoir compartments. Due to the barrier in the PM-1 reservoir compartment, an area of potentially recoverable hydrocarbons remains. In Grand Isle 33, the middle QH sand was partially depleted in the QH-2 reservoir compartment by a series of development wells. Bottom hole pressure data from wells in Grand Isle 32 & 33 reveal that the two QH fault compartments are in communication across a leaking fault. Production wells in the QH-1 compartment produced reserves from the QH-2 compartment. The lower RD sand model helped further delineate the reservoir in the RD-2 compartment and show that this compartment has been depleted. The RD model also shows the possible presence of remaining recoverable hydrocarbons in the RD-1 compartment. It is estimated that about 6.7 billion cubic feet of gas might remain within this reservoir waiting to be recovered. A seismic amplitude anomaly response from the QH and RD sands is interpreted to be a lithologic indicator rather than the presence of hydrocarbons. Amplitude response from the PM level appears to be below the resolution of the seismic data. A synthetic seismogram model was generated to represent the PM and surrounding sands. This model shows that by increasing the frequency of the seismic data from 20 Hz to a dominant frequency of 30 Hz that the PM and surrounding sands could be seismically resolvable. Also the PM-1 compartment has possible recoverable hydrocarbons of 1.5 billion cubic feet of gas remaining.
162

2-Dimensional Seismic Refraction Mapping Study of the Cretaceous-Paleogene Boundary Complex from the Brazos, Texas Section

Gowan, Joshua Smith 2012 May 1900 (has links)
Many scientific studies have been conducted on the Cretaceous-Paleogene boundary (KTB) in the Gulf coast region and, in particular, the Brazos River section in Falls County, Texas. Despite this, there remains much to be learned about the KTB and its depositional environment. Study of the KTB has been multidisciplinary, primarily in the fields of sedimentology and paleontology. Some researchers in these disciplines have questioned the consensus view of the placement of the KTB and subsequent interpretation of the timing of depositional events and mass extinction events. Geophysical methods have potential to provide additional understanding of the physical properties of the KTB. To date, study of the KTB has relied on point data and borehole information to create cross sections of the complex. Seismic refraction surveys can provide spatially continuous information on susburface horizons located adjacent to the KTB. In this study, seismic first-arrival traveltimes are processed with a tomographic modeling program to map the top of the hummocky cross-bedded sandstone (HCS), which is a key indicator of the deposition environment at the time of KTB boundary complex placement. The survey area is located at Cottonmouth Creek, a tributary of the Brazos River. Three seismic lines were surveyed, one across Cottonmouth Creek, and two parallel to the creek on either side. The data from the two parallel lines were processed using the 2-D seismic refraction tomography algorithm of Zelt and Smith. The reconstructed depth to the HCS in the survey area is approximately 6 m, with layer seismic velocities of 364, 1800, and 2200 m/s, respectively. Seismic tomography successfully mapped the HCS layer and reveals approximately 1 m amplitude undulations vertically and undulations on the order of several m horizontally. These variations are consistent with exposed surfaces of the HCS in the creek bed. Seismic refraction has been utilized successfully herein to map a key buried indicator, namely the top of the HCS layer, associated with the KTB complex. A detailed 3-D seismic refraction survey at this site is recommended to generate a high-resolution 2-D terrain map of the top of the HCS layer.
163

A passive seismic investigation of the crustal structure under Ohio /

Brandeberry, Jessica L. January 2007 (has links)
Thesis (M.S.)--University of Toledo, 2007. / Typescript. "Submitted as partial fulfillment of the requirements for The Master of Science in Geology." "A thesis entitled"--at head of title. Accompanied by CD-ROM which contains the following files: 2000-2003 Teleseismic Reduced Traveltimes.xls; 2000-2003 Teleseismic Traveltimes.xls; 2004 Teleseismic Reduced Traveltimes.xls; 2004 Teleseismic Traveltimes.xls; 2005 Teleseismic reduced Traveltimes.xls; 2005 Teleseismic Traveltimes, xls; 2006 Teleseismic Reduced Traveltimes. xls; 2006 Teleseismic Traveltimes. xls; Complete Thesis.doc; Regional Earthquake Data.xls; Teleseismic Earthquake Data.xls. Bibliography: leaves 78-80.
164

Synthesis of earthquake ground motions for the new madrid seismic zone

Drosos, Vasileios A., January 2003 (has links) (PDF)
Thesis (M.S. in C.E.)--School of Civil and Environmental Engineering, Georgia Institute of Technology, 2004. Directed by Glenn J. Rix. / Includes bibliographical references (leaves 94-97).
165

Toward high definition reservoir characterization

Luca, Gheorghe, January 2001 (has links)
Thesis (M.S.)--West Virginia University, 2001. / Title from document title page. Document formatted into pages; contains xi, 149 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 118-124).
166

3D seismic geomorphology and stratigraphy of the late Miocene to Pliocene Mississippi River Delta : fluvial systems and dynamics

Armstrong, Christopher Paul 20 July 2012 (has links)
This study uses a 1375 km2 3D seismic dataset located in the late Miocene to Pliocene Mississippi River Delta in order to investigate the external characteristics, lithology, and evolution of channelized deposits within the seismic survey. Fluvial thicknesses range from about 11 m to 90 m and widths range from about 100 m to 31 km. Channel fill can be generalized as sandy with low impedance and high porosity (~ 35%), though heterogeneity can be high. Three distinct fluvial styles were recognized: incised valleys, channel-belts, and distributive channel networks. Fluvial styles were interpreted as a result of changes in sea-level and a speculative late Miocene to Pliocene Mississippi River Delta sea-level curve constructed using these relationships. Additionally, a characteristic interval between the major changes in fluvial style was found. These fluvial systems interact with and are affected by other elements in the landscape. Growth faults in particular are common within the survey area; however, the dynamic between fluvial systems and growth fault related subsidence has been poorly understood and so was also a focus of this project. Previous work as well as this study found little evidence that growth faults are able to affect the course or geometry of the majority of small (with most < 500 m in width and < 20 m in depth) channels. However, the relationship between growth faults and larger scale channel-belt systems (between 1 km and 5 km in width and > 25 m in depth) has not been previously evaluated in this area. In contrast to the majority of small distributary channels found within the survey, channel-belts appear to be steered by growth faults. Fluvial response or insensitivity to fault induced subsidence is related to the relative timescales of avulsion and faulting. Channel-belts are longer lived features than more ephemeral small distributary channels. Channel-belts, due to their relatively low mobility compared to small channels, are more likely to experience punctuated faulting events which results in greater apparent sensitivity to faulting than seen in small channels. / text
167

Deep downhole testing: procedures and analysis for high-resolution vertical seismic profiling

Li, Songcheng, 1968- 29 August 2008 (has links)
A study was undertaken to improve the signal quality and the resolution of the velocity profile for deep downhole seismic testing. Deep downhole testing is defined in this research as measurements below 225 m (750 ft). The study demonstrated that current testing procedures can be improved to result in higher signal quality by customizing the excitation frequency of the vibrator to local site conditions of the vibrator-earth system. The earth condition beneath the base plate can be an important factor in the signal quality subject to variations with time when tests are repetitive. This work proposes a convenient method to measure the site localized natural frequency and damping ratio, and recommends using different excitation frequencies for P- and S-wave generation. Properly increasing the excitation duration of the source signal also contributes to the quality of the receiver signal. The source signature of sinusoidal vibratory source is identified. Conventional travel time analysis using vibratory source generally focuses on chirp sweeps. After testing with impulsive sources and chirp sweeps and comparing the results with the durational sinusoidal source, the sinusoidal source was then chosen. This work develops an approach to identifying the source signature of the sinusoidal source and concludes that the normalized source signature is relevant only to four parameters: the fixed-sine excitation frequency, the duration of excitation, the damping ratio of the vibrator-earth system, and the damped natural frequency of the vibrator-earth system. Two of the parameters are designated input to the vibrator and the other two parameters are measured in the field test using the proposed method in this work. A new wavelet-response technique based on deconvolution and consideration of velocity dispersion is explored in travel-time analyses. The wavelet-response technique is also used for development of a new approach to correcting disorientation of receiver tool. The improved downhole procedures and analyses are then used in the analysis of deep downhole test data obtained at Hanford, WA. Downhole testing was performed to a depth of about 420 m (1400 ft) at Hanford site. Improvements in resolving the wave velocity profiles to depths below 300 m (1000) ft are clearly shown. / text
168

COMPLEX RUPTURE PROCESSES OF THE SOLOMON ISLANDS SUBDUCTION ZONE EARTHQUAKE AND SUBDUCTION CONTROLLED UPPER MANTLE STRUCTURE BENEATH ANATOLIA

Biryol, Cemal Berk January 2009 (has links)
This dissertation explores subduction zone-related deformation both on short time scales in the form of subduction zone earthquakes and over larger time and geographical scales in the form of subduction rollback or detachment of the subducting lithosphere. The study presented here is composed of two parts. First, we analyzed the source-rupture processes of the April 1, 2007 Solomon Islands Earthquake (Mw=8.1) using a body-wave inversion technique. Our analysis indicated that the earthquake ruptured approximately 240 km of the southeast Pacific subduction zone in two sub-events.In the second part of this study, we used shear-wave splitting analysis to investigate the effects of the subducting African lithosphere on the upper-mantle flow field beneath the Anatolian Plate in the Eastern Mediterranean region. Our shear-wave splitting results are consistent with relatively uniform southwest-directed flow towards the actively southwestward-retreating Aegean slab. Based on spatial variations in observed delay times we identified varying flow speeds beneath Anatolia and we attribute this variation to the differential retreat rates of the Aegean and the Cyprean trenches.Finally, we used teleseismic P-wave travel-time tomography to image the geometry of the subducting African lithosphere beneath the Anatolia region. Our tomograms show that the subducting African lithosphere is partitioned into at least two segments along the Cyprean and the Aegean trenches. We observed a gap between the two segments through which hot asthenosphere ascends beneath the volcanic fields of western Anatolia. Our results show that the Cyprean slab is steeper than the Aegean slab. We inferred that this steep geometry, in part, controls the flow regime of asthenosphere beneath Anatolia causing variations in flow speeds inferred from shear-wave splitting analysis.
169

Modeling of seismic coda, with application to attenuation and scattering in southeastern Tennessee

Ogilvie, Jeffrey Scott 08 1900 (has links)
No description available.
170

Deconvolution of seismic data using extremal skew and kurtosis

Vafidis, Antonios. January 1984 (has links)
No description available.

Page generated in 0.0326 seconds