• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 13
  • 12
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 178
  • 178
  • 108
  • 50
  • 39
  • 21
  • 20
  • 20
  • 16
  • 15
  • 15
  • 13
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Crustal structures and the Eastern extent of the Lower Paleozoic Shelf Strata within the Central Appalachians: a seismic reflection interpretation

Lampshire, Laura Dermody 16 February 2010 (has links)
Reprocessing of line PR3 proprietary seismic reflection data (24-fold) has delineated Grenvillian, Paleozoic and Mesozoic structures within the Appalachian foreland, Blue Ridge, and Piedmont of the central Appalachians. The eastern portion of PR3 can be correlated along strike with the western portion of line 1-64, reprocessed earlier at Virginia Tech. The 1-64 seismic reflection data (12-fold) images the crust from the eastern Valley and Ridge, Blue Ridge, Piedmont and Atlantic Coastal Plain provinces. Automatic line drawing displays were produced from both data sets for the purpose of interpreting and comparing subsurface structures. Within the Piedmont, large reflective structures imaged on both lines PR3 and 1-64 are interpreted to be nappes that might be comprised of deformed Catoctin, Evington Group and possibly younger metamorphosed rocks. A concealed extension of the Green Springs mafic mass intrudes a nappe imaged along the PR3 profile. The Blue Ridge-Piedmont allochthon was transported in a northwest direction along the Blue Ridge thrust, which ramped upward beneath the Piedmont province approximately 12 km east of the surface exposure of the Mountain Run Fault. Along line PR3, the Blue Ridge thrust maintains an undulating geometry, and the maximum thickness of the Blue Ridge allochthon is interpreted to be approximately 4.5 km. The Blue Ridge metamorphic allochthon is generally acoustically transparent and overlies parautochthonous Lower Paleozoic shelf strata. The maximum thickness of these strata is approximate1y 8 km. Shelf strata are interpreted to extend as far east as 5 km east of the surface exposure of the Mountain Run Fault, the northeastward extension of the Brevard Fault Zone, where they are truncated by the Blue Ridge thrust at a depth of 10.5 km (3.5 s). Various folds and blind thrusts are imaged beneath the Appalachian foreland; however, the foreland does not appear to have experienced the same degree of deformation as observed in the eastern provinces. A basement uplift approximately 45 km wide is imaged beneath the Valley and Ridge province and is interpreted as having formed prior to Upper Cambrian time. Further west, reflections itnaged beneath the Glady Fork anticline in the Appalachian Plateau are interpreted as a positive flower structure associated with wrench fault tectonics. Relatively few deep crustal reflections are inlaged along line PR3. The majority of reflections that does exist at these depths is observed beneath the Piedmont and eastern Blue Ridge. The high reflectivity associated with the Grenvillian basement in these areas suggests that this crust was deformed during compression related to the Paleozoic orogenies and extension related to Late Proterozoic and Mesozoic rifting. / Master of Science
92

Estimation of seismic parameters from multifold reflection seismic data by generalized linear inversion of Zoeppritz equations

Demirbağ, Mustafa Emin 01 February 2006 (has links)
An inversion method is developed to estimate the P- and S-wave velocities and density ratio of two elastic, isotropic, and homogeneous media separated by a plane, horizontal boundary from P-wave reflection amplitude-versus-offset (AVO) data recorded at the surface. The method has for its basis the inversion of the plane wave Zoeppritz. equations by generalized linear inversion (GLI) and bootstrapping. The Zoeppritz equations are converted into the time-offset domain by using Snell’s law, common mid-point (CMP) geometry, and two-way travel (twt) time. The equations in the time-offset domain have five independent variables that enable estimation of P- and S-wave velocities and density ratio for the upper and lower layers. The linearity and uniqueness of the inversion are investigated by residual function maps (RFMs). The RFMs show closed elliptical contours around the true values of the seismic parameter pairs except in the case of S-wave velocity pair for which the open contours imply a linear correlation. However, the RFMs of S-wave velocities with the other model parameters show well defined minima, indicating the uniqueness of the inverse problem in the absence of noise. The estimation of seismic parameters is constrained by physical considerations and the results are enhanced statistically by bootstrapping to obtain the most likely solutions, i.e., the mode values of the distribution functions of solutions, and the confidence limits of the most likely solutions. The inversion method is tested using model AVO data with and without random noise. The tests show that the model parameters are exactly recovered when offset-to-depth (O/D) ratio 1s about 2 or larger, depending on the contrast among the seismic parameters of the media. The results for small O/D ratios (< 1) diverge from the true values, especially for S-wave velocities, and indicate the importance of the O/D ratio in the AVO data inversion. The parameters are not recovered correctly in the case of noisy model AVO data because of the degrading effect of noise in the inversion. However, the model parameters fall into the confidence limits of the estimated parameters when tight constraints are imposed on the solutions, and the signal to noise (S/N) ratio is high. The inversion method is sensitive to auxiliary parameters such as the root-mean-square (rms) velocity and zero-offset twt time which are used in the adjustments of observed or calculated reflection amplitudes to compensate for the effects of wave propagation. Because the plane wave Zoeppnitz equations define the variation in reflection amplitude with offset for a single boundary, the method is limited to isolated reflections in the CMP gathers. The AVO inversion is applied to field data from the Atlantic Coastal Plain in South Carolina to show the feasibility of the method. The first example is from Charleston, S.C. where the estimated seismic parameters from adjacent CMP gathers are in close agreement demonstrating the stability of the AVO inversion. The second example is a data set that crosses the border fault of the Dunbarton Triassic basin, S.C. For this data set common offset stacked CMP gathers are used to increase the S/N ratio and minimize the surface coupling effects. The inversion results show that the seismic parameters are greater north of the border fault indicating crystalline basement while smaller parameters to the south represent the Triassic basin. P-wave velocities estimated for the crystalline basement (6.4 km/s) and the Triassic basin (4.8 km/s) are in good agreement with the computed refraction velocities and support the interpreted location of the Dunbarton Triassic border fault. / Ph. D.
93

Velocity and Q from reflection seismic data

Ecevitoglu, Berkan G. January 1987 (has links)
This study has resulted in the discovery of an exact method for the theoretical formulation of the effects of intrinsic damping where the attenuation coefficient, a(v), is an arbitrary function of the frequency, v. Absorption-dispersion pairs are computed using numerical Hilbert transformation; approximate analytical expressions that require the selection of arbitrary constants and cutoff frequencies are no longer necessary. For constant Q, the dispersive body wave velocity, p(v), is found to be p(v) = (p(v<sub>N</sub>)/(1+(1/2Q H(-v)/v)) where H denotes numerical Hilbert transformation, p(v) is the phase velocity at the frequency v, and p(v<sub>N</sub>) is the phase velocity at Nyquist. From (1) it is possible to estimate Q in the time domain by measuring the amount of increase, ΔW, of the wavelet breadth after a traveltime, Q=(2Δ𝛕)/(𝝅ΔW) The inverse problem, i.e., the determination of Q and velocity is also investigated using singular value decomposition (SVD). The sparse matrices encountered in the acquisition of conventional reflection seismology data result in a system of linear equations of the form AX = B, with A the design matrix, X the solution vector, and B the data vector. The system of normal equations is AᵀAX = AᵀB where the least-squares estimate of X = X = V(1/S)UᵀB and the SVD of A is A = USVᵀ. A technique to improve the sparsity pattern prior to decomposition is described. From an application of equation (2) using reference reflections from shallower reflectors, crystalline rocks in South Carolina over the depth interval from about 5 km to 10 km yield values of Qin the range Q = 250 - 300. Non-standard recording geometries ( "Q-spreads") and vibroseis recording procedures are suggested to minimize matrix sparseness and increase the usable frequency bandwidth between zero and Nyquist. The direct detection of body wave dispersion by conventional vibroseis techniques may be useful to distinguish between those crustal volumes that are potentially seismogenic and those that are not. Such differences may be due to variations in fracture density and therefore water content in the crust. / Ph. D.
94

The application of extensive 3D Seismic Reflection Data for the exploration of extensive inundated Palaeolandscapes

Fitch, Simon, Gaffney, Vincent L. January 2013 (has links)
Yes
95

3D Geophysical and Geological Modeling in the Skellefte District: Implications for Targeting Ore Deposits

Malehmir, Alireza January 2007 (has links)
With the advancements in acquisition and processing of seismic reflection data recorded over crystalline rocks, building three-dimensional geologic models becomes increasingly favorable. Because of little available petrophysical data, interpretations of seismic reflection data in hardrock terrains are often speculative. Potential field data modeling are sometimes performed in order to reduce the ambiguity of seismic reflection interpretations. The Kristineberg mining area in the western part of the Paleoproterozoic Skellefte Ore District was chosen to construct a pilot three-dimensional geologic model in an attempt to understand the crustal architecture in the region and how the major mineral systems operated in this architecture. To contribute to this aim, two parallel seismic reflection profiles were acquired in 2003 and processed to 20 sec with special attention to the top 4 sec of data. Several reflections were imaged and interpreted by the aid of reflector modeling, borehole data, 2.5D and 3D potential field modeling, and geological observations. Interpretations are informative at the crustal scale and help to construct a three-dimensional geologic model of the Kristineberg mining area. The three-dimensional geologic model covers an area of 30×30 km2 down to a depth of 12 km. The integrations help to interpret a structural basement to the Skellefte volcanic rocks, possibly with Bothnian Basin metasedimentary affinity. The contact is a shear-zone that separates the two units, generating large fold structures, which can be observed in the region. The interpretations help to divide the Revsund granitic rocks into two major groups based on their present shape and thickness. A large gravity low in the south is best represented by the intrusion of thick dome of Revsund granite. In the north, the low-gravity corresponds to the intrusion of sheet-like Revsund granites. In general, the structure associated with the Skellefte volcanics and the overlying metasedimentary rocks are two thrusts exposing the Skellefte volcanic rocks in the cores of hanging wall anticlinal structures. Lack of coherent reflectivity in the seismic reflection data may be due to complex faulting and folding systems observed in the Skellefte volcanics. Ultramafic sills within the metasedimentary rocks are interpreted to extend down to depths of about 5-6 km. The interpretations are helpful for targeting new VHMS deposits and areas with gold potential. For VHMS deposits, these are situated in the southern limb of a local synformal structure south of the Kristineberg mine, on the contact between the Revsund granite and the Skellefte volcanic rocks. A combination of metasedimentary and mafic-ultramafic rocks are highly gold prospective in the west, similar to observations elsewhere in the region. There are still questions that remain unanswered and need more work. New data in the study area will help to answer questions related to e.g., an enigmatic diffraction seismic signal in Profile 5 and the structural relationship between the Skellefte volcanic rocks and the Malå volcanics. Although the derived 3D geologic model is preliminary and constructed at the crustal scale, it provides useful information to better understand the tectonic evolution of the Kristineberg mining area.
96

SHEAR-WAVE IMAGING AND BIREFRINGENCE IN A COMPLEX NEAR-SURFACE GEOLOGICAL ENVIRONMENT

Almayahi, Ali Z. 01 January 2013 (has links)
Multiple geophysical and geological data sets were compiled, reprocessed, and interpreted using state-of-the-art signal processing and modeling algorithms to characterize the complex post-Paleozoic geology that overlies the southwestern projection of the Fluorspar Area Fault Complex (FAFC) in western Kentucky. Specific data included 21.5 km of SH-wave seismic reflection, 1.5 km of P-wave seismic reflection, 2 km of electrical resistivity, vertical seismic profiles, Vp and Vs sonic-suspension logs, and 930 lithologic borehole logs. The resultant model indicates three general northeast–southwest-oriented fault zones pass through the study area as southwestern extensions of parts of the FAFC. These fault zones form two significant subparallel grabens with ancillary substructures. The geometry of the interpreted fault zones indicates that they have undergone episodic tectonic deformation since their first formation. Evidence of thickening and steeply dipping reflectors within Tertiary and Quaternary sediment in the downthrown blocks indicate syndepositional movement. Subtle thickening and lack of steeply dipping intraformational reflectors in the Cretaceous suggest a more quiescent period, with sediment deposition unconformably draping and filling the earlier Paleozoic structural surface. There is also evidence that the Tertiary and early Quaternary reactivation was associated with an extensional to compressional regional stress reversal, as manifested by the antiformal folds seen in the hanging wall reflectors and the potential small-amplitude force folds in the Quaternary alluvium, as well as a clear displacement inversion along the Metropolis-loess seismic horizon in two high-resolution reflection images. A surface shear-wave splitting experiment proved to be an efficient and effective tool for characterizing shallow subsurface azimuthally anisotropic geologic inclusions in low-impedance water-saturated sediment environments. The measured azimuthal anisotropy across a well-constrained N60ºE-striking fault exhibited a natural coordinate system that had a fast direction coincident with the fault strike and an orthogonal slow direction. This is also one indicator that faults inactive during significant geologic intervals (i.e., Holocene) do not "heal". Integrated shear-wave velocity models and electrical resistivity tomography profiles across the fault zones exhibit lower shear-wave velocities and resistivities within the deformation zones compared with values outside the boundaries. This is additional evidence that the deformed sediment does not reconsolidate or heal, but that the sediment particle configuration remains more loosely packed, providing an increase in the overall porosity (i.e., hydraulic conductivity). This can wholly or in large part explain the anomalous contaminant plume migration path that is coincident with the deformed zones of the regional gravel groundwater aquifer.
97

Fluid content effect on acoustic impedance and limits of direct detection capability : illustrated on an offshore prospect

Catto, Antonio José 24 October 2014 (has links)
The presence of gas and oil in some sand formations decreases the seismic velocity and density to such an extent that anomalously large reflections coefficients are encountered at fluid contacts. Geerstma and Gassmann's theories are equivalent and provide a good way to study the physical properties that affect the elastic behavior of the porous rock. The fluid-contact reflectivity (gas-water, oil-water) can be well estimated based on the brine saturated velocity alone. A comparison between the estimated and observed fluid-contact reflectivities on seismic and well log data from an Offshore prospect showed a remarkable agreement. / text
98

Geophysical studies in the western part of the Siljan Ring Impact Crater

Muhamad, Harbe January 2017 (has links)
This thesis utilizes several geophysical methods to study the Siljan Ring impact structure, focusing on the western part of the structure. This thesis, and the three papers upon which it is based, reports on attempts to delineate the Paleozoic rocks at depth within the annular ring graben and characterize their structure. In addition, the nature of the basement, which underlies these sedimentary rocks is investigated. Papers I and III focus on analysis of the down-hole logging and borehole core data. As well as the acquisition, processing and interpretation of 2D high-resolution reflection seismic data from the Mora area. The borehole log responses were compared with the core lithology from the Mora 001 borehole and information from two other cores (Mora VM 2 and Mora MV 3) in order to interpret the logs. The logs reveal significant changes in the lithology between boreholes, indicating a very high level of structural complexity, which is attributed to impact tectonics. In addition, the log data revealed a high sonic velocity contrast between the Silurian and Ordovician successions and a higher apparent temperature gradient than in the northern part of the structure. The interpretation of the high-resolution 2D seismic data suggest that the Mora area has been significantly affected by the impact. Several potential faults were identified in the area and interpreted to be post depositional and related to the impact. In paper II, a 2D seismic profile from the Orsa area (12 km) located in the northwestern part of the Siljan Ring was re-processed. To compliment this seismic line, first break traveltime tomography results, vintage seismic OPAB profiles, new and pre-existing gravity data, aeromagnetic data and the bedrock geological map were used to present a geological model along the Orsa profile. Reprocessing of the seismic data resulted in improved stacked and migrated sections and better imaging of the top of the crystalline basement than the original processing. Integrated interpretation of the seismic profiles suggests that the area has been significantly affected by faulting and that the depth to the basement varies greatly along the different profiles.
99

Seismological and mineralogical studies of the world’s deepest gold-bearing horizon, the Carbon Leader Reef, West Wits Line goldfields (South Africa): implications for its poor seismic reflective character

Nkosi, Nomqhele Zamaswazi January 2016 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand in fulfilment of the requirements for the degree of Master of Science, School of Geosciences. Johannesburg, 2016. / The measurements of physical rock properties, seismic velocities in particular, associated with ore deposits and their host rocks are crucial in interpreting seismic data collected at the surface for mineral exploration purposes. The understanding of the seismic velocities and densities of rock units can help to improve the understanding of seismic reflections and thus lead to accurate interpretations of the subsurface geology and structures. This study aims to determine the basic acoustic properties and to better understand the nature of the seismic reflectivity of the world’s deepest gold-bearing reef, the Carbon Leader Reef (CLR). This was done by measuring the physical properties (ultrasonic velocities and bulk densities) as well as conducting mineralogical analyses on drill-core samples. Ultrasonic measurements of P- and S-wave velocities were determined at ambient and elevated stresses, up to 65 MPa. The results show that the quartzite samples overlying and underlying the CLR exhibit similar velocities (~ 5028 m/s-5480 m/s and ~ 4777 m/s-5211 m/s, respectively) and bulk densities (~ 2.68 g/cm3 and 2.66 g/cm3). This is due to similar mineralogy and chemical compositions observed within the units. However, the CLR has slightly higher velocity (~ 5070 m/s-5468 m/s) and bulk density (~ 2.78 g/cm3) than the surrounding quartzite units probably due to higher pyrite content in the reef, which increases the velocity. The hangingwall Green Bar shale exhibits higher velocity (5124 m/s-5914 m/s) and density values (~ 2.89 g/cm3-3.15 g/cm3) compared to all the quartzite units (including the CLR), as a result of its finer grain size and higher iron and magnesium content. In the data set it is found that seismic velocities are influence by silica, iron and pyrite content as well as the grain size of the samples, i.e., seismic velocities increase with (1) decreasing silica content, (2) increasing iron and pyrite content and (3) decreasing grain size. Reflection coefficients calculated using the seismic velocities and densities at the boundaries between the CLR and its hangingwall and footwall units range between ~0.02 and 0.05, which is below the suggested minimum of 0.06 required to produce a strong reflection between two lithological units. This suggests that reflection seismic methods might not be able to directly image the CLR as a prominent reflector, as observed from the seismic data. The influence of micro-cracks is observed in the unconfined uniaxial compressive stress tests where two regimes can be identified: (1) From 0 - 25 MPa the P-wave velocities increase with progressive loading, but at different rates in shale and quartzite rocks owing to the presence of micro-cracks and (2) above stresses of ~20 - 25 MPa, the velocity stress relationship becomes constant, possibly indicating total closure of micro-cracks. The second part of the study integrates 3D reflection seismic data, seismic attributes and information from borehole logs and underground mapping to better image and model important fault systems that might have a direct effect on mining in the West Wits Line goldfields. 3D seismic data have delineated first-, second- and third-order scale faults that crosscut key gold-bearing horizons by tens to hundreds of metres. Applying the modified seismic attribute has improved the imaging of the CLR by sharpening the seismic traces. Conventional interpretation of the seismic data shows that faults with throws greater than 25 m can be clearly seen. Faults with throws less than 25 m were identified through volumetric (edge enhancement and ant-tracking seismic attributes) and horizon-based (dip, dip-azimuth and edge detection seismic attributes) seismic attribute analysis. These attributes provided more accurate mapping of the depths, dip and strikes of the key seismic horizon (Roodepoort shale), yielding a better understanding of the relationship between fault activity, methane migration and relative chronology of tectonic events in the goldfield. The strato-structural model derived for the West Wits Line gold mines can be used to guide future mine planning and designs to (1) reduce the risks posed by mining activities and (2) improve the resource evaluation of the goldbearing reefs in the West Wits Line goldfields. / LG2017
100

INTEGRATED SEISMIC-REFLECTION AND MICROGRAVITY IMAGING ACROSS THE SOUTHERN BOUNDARY OF THE CHARLESTON UPLIFT, NEW MADRID SEISMIC ZONE, USA

Burford, Drew D., Jr. 01 January 2019 (has links)
The Charleston Uplift (CU), a 30-km-long by 7-km-wide, N46°E-oriented subsurface geologic anomaly in the northern Mississippi embayment near Charleston, Missouri, exhibits up to 36 m of vertical relief across the Paleogene/Quaternary unconformity. Subsurface structural relief, along with the CU’s coincident boundary alignment with contemporary microseismicity and the New Madrid North Fault (NMNF), suggest a structural origin. Subsequent seismic soundings indicate vertical structural relief is present in Cretaceous and Paleozoic horizons, supporting the fault-controlled origin. The southern boundary (CU-s) had not been investigated, nor had any direct fault images been acquired. Integrated microgravity and seismic-reflection methods across the inferred CU-s establish the first image of this fault. Forward modeling indicated that the vertical variation of strata across the CU-s would induce a microgravity anomaly of 1.6 mGal. The observed microgravity anomaly survey across the southern boundary is 1.616 ± .004 mGal, and is consistent with the tectonic interpretation. A subsequently acquired seismic-reflection profile corroborates this interpretation. The imaged fault shows approximately 60, 35, and 35 meters of vertical down-to-the-south throw across the tops of Paleozoic, Cretaceous, and Tertiary horizons, respectively. This confirms the CU is not an erosional feature, but a structurally controlled extension of the NMNF.

Page generated in 0.1045 seconds