• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The establishment of a digital seismic acquisition system and its subsequent application in the field.

Evans, Brian J. January 1984 (has links)
The seismic method in exploration geophysics consists of creating a mechanical disturbance at or close to the surface of the earth, and observing its effects at a number of chosen locations along the surface. The purpose of seismic data acquisition is to record these effects in such a manner that their relation with the initial disturbance can be interpreted as a guide to the earth's subsurface structure (Nettleton, 1940).The validity of data interpretation depends upon the fidelity of recording. A better seismic interpretation can result from correctly collected data using instrumentation which faithfully records the seismic signal. Subsequent computer processing cannot reconstruct information which is not contained in the recorded field data. Hence, the quality of field data recording must be at an optimum level, otherwise the result will be an inferior interpretation (Donnell,1957).A reflection seismic data acquisition system was assembled and put into operation. The basic instrument was a Texas Instruments DFS IV, obtained from marine vessel M/V Banksia, and commissioned for land application.The system was tested and evaluated. The instrument analog filter phase distortion was studied in detail. The study indicated that phase distortion can be a major cause of seismic misties. Without a knowledge of the particular recording instrumentation filter transfer function, data processing bureaux may not compensate for phase distortion effects adequately (Gray et al., 1968).Once testing was completed satisfactorily, the operational system was applied to several practical field situations of commercial standard. A series of noise studies was performed to evaluate not only source generated noise, but also to study the effect of different types of energy sources on seismic data. In addition, two multi-fold seismic lines wore recorded, both of which were considered superior ++ / to those previously produced by the industry, at each location (Jacia, pers. comm., 1984).Finally, a single fold three-dimensional areal seismic survey was performed over the Woodada gas field. The results of this survey will be released after processing has been completed by Allied Geophysical Laboratories (University of Houston), and are not contained in this thesis.Future areas for field application are discussed. Recommendations are made for further research work in the area of phase distortion; the examination of different energy sources; a review of receiver properties and horizontally travelling seismic waves; a bore-hole seismic study and finally, a fourth-dimensional recording technique involving the performance of an offset VSP survey at the same time as an areal 3-D seismic survey.Volume 1 describes the establishment of the acquisition system and its subsequent field application.Volume 2 contains the Appendix of instrument tests and their analysis.
2

Imagerie sismique et océanographique des masses d'eau sur le plateau continental breton / Seismic and oceanographic imaging of water bodies on the continental shelf of Brittany

Piété, Helen 17 December 2012 (has links)
Ce travail constitue une étude préliminaire au développement d’un nouvel outil d’observation de la thermocline saisonnière de la Mer d’Iroise, la sismique réflexion. Une application inédite de cette technique à l’imagerie de structures océanographiques très peu profondes (z < 50 m) est réalisée. Dans un premier temps des règles de construction d’un dispositif sismique dédié à l’observation de telles cibles ont été définies à partir d’une réflexion théorique sur la mesure de sismique. Une évaluation de systèmes existants a ensuite été réalisée au travers de l’étude de 4 profils sismiques des campagnes GO, Carambar et Sigolo retraités spécifiquement, présentant des signaux aux mêmes profondeurs que la thermocline de l’Iroise. Ces dispositifs conventionnels apparaissent inadaptés à l’observation d’une cible océanographique superficielle, du fait i – d’un fort effet de filtre d’antenne lié à de grands offsets et longueurs de trace, et ii – de sources qui ne combinent pas puissance et fine résolution verticale. A partir de données océanographiques nouvelles acquises en Mer d’Iroise lors de la campagne Fromvar (été 2010), l’acquisition sismique a été modélisée, et les paramètres du dispositif idéal ajusté. Un système courts – offsets comprenant 4 flûtes de 6 traces de 1.8 m et un Sparker fournissant un signal de 400 Hz avec un niveau d’émission de 210 dB re 1 μPa @1m, a été proposé. Testé lors de la campagne ASPEX 2012, il a fournit une image de résolution latérale inédite de la thermocline saisonnière à 30 m de profondeur et de ses variations de fine échelle horizontale (quelques centaines de m à quelques km) causées par des ondes internes, au large de la Bretagne sud. / This work is a preliminary study for the development of a new tool, marine seismic reflection, for the observation of the seasonal thermocline of the Iroise Sea. It is the first application of this technique to the observation of shallow oceanographic structures (z < 50 m). In order to define general requirements for the design of a seismic acquisition system suited to the imaging of such targets, the theory of the seismic measurement was first investigated. Four multi-channel seismic reflection profiles from the GO, Carambar and Sigolo cruises were then reprocessed and analyzed in order to assess the potential of conventional seismic systems. They were found ill suited to the imaging of shallow oceanographic structures, because of a high antenna filter induced by large offsets and seismic trace lengths, and sources that do not reconcile with the high level of emission and fine vertical resolution. New oceanographic data acquired in the Iroise Sea during the Fromvar 2010 cruise allowed simulation of the seismic acquisition, and the definition of optimal acquisition parameters for the imaging of the seasonal thermocline. Sea trials of this specifically designed system were performed during the ASPEX survey, conducted in early summer 2012. The seismic device featured: four seismic streamers, each consisting of 6 traces of 1.80 m.; a 1000 J SIG Sparker source, providing a 400 Hz signal with a level of emission of 210 dB re 1 μPa @1m. This survey captured the 15 m thick, 30 m deep seasonal thermocline in unprecedented detail, showing images of vertical displacements of horizontal wavelength of a several hundreds m to a few km , most probably induced by internal waves.

Page generated in 0.1217 seconds