• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 10
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 108
  • 108
  • 108
  • 30
  • 20
  • 15
  • 15
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Thin-bed resolution from cepstrum analysis

Bryan, Robert A. January 1985 (has links)
A method of cepstrum analysis is developed for the purpose of resolving thin-beds. The method relies on the detection of periodic pulses of the cepstra of reflectivity functions, which are isolated by computing a sub-cepstrum and a sum-cepstrum, and highlighted with a discriminator, where the sub-cepstrum of the functions f₁(t) and f₂(t) is the difference between the cepstra of the two functions, the sum-cepstrum of f₁(t) is the sum of the sub-cepstra of f₁(t) and f<sub>k</sub>(t), k=2,3,4,... , and the discriminator is the product of the sum-cepstrum and the autocovariance of the sum-cepstrum. The technique requires at least two reflected wavelets generated by the same source. The method was applied to synthetic thin lens models. The method is shown to be sensitive to the ratio of the reflection coefficients at the top and bottom of the thin-bed. Specifically, the resolution depends on the ratio of the reflection coefficients. Optimum resolution is achieved when the reflection coefficients at the top and bottom of the thin-bed are equal in absolute magnitude. In addition, in the noise-free case, the absolute magnitude of the cepstral pulses can be used to determine the absolute magnitude of the ratio of the reflection coefficients. The technique is also sensitive to the sample interval used. The finest sample interval provides the best resolution because it produces the sharpest cepstral pulses and resolves the thinnest beds. The resolution of the method is drastically reduced by random noise, although thin-bed thicknesses are still detectable when the S/N of the synthetic seismic section is 15/1 and the upper frequency of the bandwidth of the noise is 1.1 octaves above the upper frequency of the bandwidth of the source wavelet. / Master of Science
72

The reprocessing and extended interpretation of seismic reflection data recorded over the Hayesville-Fries thrust sheet in southwestern North Carolina

Scott, Stephen M. January 1987 (has links)
Reprocessing of Appalachian Ultradeep Core Hole (ADCOH) southern Appalachian seismic reflection data was focused on improving the reflection imaging and hence interpretability of seismic signatures previously interpreted as duplexes created by thrust stacking of thin beds of Paleozoic shelf strata. The reprocessed data are used to determine a more unique depth domain geometry for one of the proposed duplexes. Reprocessed data are partially improved through an increase in both stacking velocity coverage and datum statics velocity coverage as well as an appropriate use of residual statics. Interpretability increases from the improvement in resolution and the consideration of geologic strike direction relative to profile direction. Initial shotpoint ray trace modeling shows the chaotic nature of raypaths and some of the problems associated with the imaging of reflections when complex geology is involved. Data reprocessing and two-dimensional ray trace modeling yield results which suggest that the studied seismic signature is part of a broad hinterland-dipping duplex. At the trailing edge of the duplex itself beds appear to be successively fault truncated, perhaps explaining the increased amplitude and reflectivity in this zone. The truncations result in a wedge-shaped geometry that resembles the trailing edge of an antiformal stack duplex. The improved data also show 1) a shallow band of reflections that correlate with the Shope Fork and Chunky Gal Mountain faults within the Blue Ridge allochthon, 2) thrust ramping initiated by basement faulting that extends only a short distance into the overlying sedimentary strata, 3) a more highly faulted Grenville basement surface and, 4) almost intact Paleozoic shelf strata (?) being carried along the thrust surface serving and bounding the hinterland-dipping duplex. / M.S.
73

Crustal structures and the Eastern extent of the Lower Paleozoic Shelf Strata within the Central Appalachians: a seismic reflection interpretation

Lampshire, Laura Dermody 16 February 2010 (has links)
Reprocessing of line PR3 proprietary seismic reflection data (24-fold) has delineated Grenvillian, Paleozoic and Mesozoic structures within the Appalachian foreland, Blue Ridge, and Piedmont of the central Appalachians. The eastern portion of PR3 can be correlated along strike with the western portion of line 1-64, reprocessed earlier at Virginia Tech. The 1-64 seismic reflection data (12-fold) images the crust from the eastern Valley and Ridge, Blue Ridge, Piedmont and Atlantic Coastal Plain provinces. Automatic line drawing displays were produced from both data sets for the purpose of interpreting and comparing subsurface structures. Within the Piedmont, large reflective structures imaged on both lines PR3 and 1-64 are interpreted to be nappes that might be comprised of deformed Catoctin, Evington Group and possibly younger metamorphosed rocks. A concealed extension of the Green Springs mafic mass intrudes a nappe imaged along the PR3 profile. The Blue Ridge-Piedmont allochthon was transported in a northwest direction along the Blue Ridge thrust, which ramped upward beneath the Piedmont province approximately 12 km east of the surface exposure of the Mountain Run Fault. Along line PR3, the Blue Ridge thrust maintains an undulating geometry, and the maximum thickness of the Blue Ridge allochthon is interpreted to be approximately 4.5 km. The Blue Ridge metamorphic allochthon is generally acoustically transparent and overlies parautochthonous Lower Paleozoic shelf strata. The maximum thickness of these strata is approximate1y 8 km. Shelf strata are interpreted to extend as far east as 5 km east of the surface exposure of the Mountain Run Fault, the northeastward extension of the Brevard Fault Zone, where they are truncated by the Blue Ridge thrust at a depth of 10.5 km (3.5 s). Various folds and blind thrusts are imaged beneath the Appalachian foreland; however, the foreland does not appear to have experienced the same degree of deformation as observed in the eastern provinces. A basement uplift approximately 45 km wide is imaged beneath the Valley and Ridge province and is interpreted as having formed prior to Upper Cambrian time. Further west, reflections itnaged beneath the Glady Fork anticline in the Appalachian Plateau are interpreted as a positive flower structure associated with wrench fault tectonics. Relatively few deep crustal reflections are inlaged along line PR3. The majority of reflections that does exist at these depths is observed beneath the Piedmont and eastern Blue Ridge. The high reflectivity associated with the Grenvillian basement in these areas suggests that this crust was deformed during compression related to the Paleozoic orogenies and extension related to Late Proterozoic and Mesozoic rifting. / Master of Science
74

Estimation of seismic parameters from multifold reflection seismic data by generalized linear inversion of Zoeppritz equations

Demirbağ, Mustafa Emin 01 February 2006 (has links)
An inversion method is developed to estimate the P- and S-wave velocities and density ratio of two elastic, isotropic, and homogeneous media separated by a plane, horizontal boundary from P-wave reflection amplitude-versus-offset (AVO) data recorded at the surface. The method has for its basis the inversion of the plane wave Zoeppritz. equations by generalized linear inversion (GLI) and bootstrapping. The Zoeppritz equations are converted into the time-offset domain by using Snell’s law, common mid-point (CMP) geometry, and two-way travel (twt) time. The equations in the time-offset domain have five independent variables that enable estimation of P- and S-wave velocities and density ratio for the upper and lower layers. The linearity and uniqueness of the inversion are investigated by residual function maps (RFMs). The RFMs show closed elliptical contours around the true values of the seismic parameter pairs except in the case of S-wave velocity pair for which the open contours imply a linear correlation. However, the RFMs of S-wave velocities with the other model parameters show well defined minima, indicating the uniqueness of the inverse problem in the absence of noise. The estimation of seismic parameters is constrained by physical considerations and the results are enhanced statistically by bootstrapping to obtain the most likely solutions, i.e., the mode values of the distribution functions of solutions, and the confidence limits of the most likely solutions. The inversion method is tested using model AVO data with and without random noise. The tests show that the model parameters are exactly recovered when offset-to-depth (O/D) ratio 1s about 2 or larger, depending on the contrast among the seismic parameters of the media. The results for small O/D ratios (< 1) diverge from the true values, especially for S-wave velocities, and indicate the importance of the O/D ratio in the AVO data inversion. The parameters are not recovered correctly in the case of noisy model AVO data because of the degrading effect of noise in the inversion. However, the model parameters fall into the confidence limits of the estimated parameters when tight constraints are imposed on the solutions, and the signal to noise (S/N) ratio is high. The inversion method is sensitive to auxiliary parameters such as the root-mean-square (rms) velocity and zero-offset twt time which are used in the adjustments of observed or calculated reflection amplitudes to compensate for the effects of wave propagation. Because the plane wave Zoeppnitz equations define the variation in reflection amplitude with offset for a single boundary, the method is limited to isolated reflections in the CMP gathers. The AVO inversion is applied to field data from the Atlantic Coastal Plain in South Carolina to show the feasibility of the method. The first example is from Charleston, S.C. where the estimated seismic parameters from adjacent CMP gathers are in close agreement demonstrating the stability of the AVO inversion. The second example is a data set that crosses the border fault of the Dunbarton Triassic basin, S.C. For this data set common offset stacked CMP gathers are used to increase the S/N ratio and minimize the surface coupling effects. The inversion results show that the seismic parameters are greater north of the border fault indicating crystalline basement while smaller parameters to the south represent the Triassic basin. P-wave velocities estimated for the crystalline basement (6.4 km/s) and the Triassic basin (4.8 km/s) are in good agreement with the computed refraction velocities and support the interpreted location of the Dunbarton Triassic border fault. / Ph. D.
75

Velocity and Q from reflection seismic data

Ecevitoglu, Berkan G. January 1987 (has links)
This study has resulted in the discovery of an exact method for the theoretical formulation of the effects of intrinsic damping where the attenuation coefficient, a(v), is an arbitrary function of the frequency, v. Absorption-dispersion pairs are computed using numerical Hilbert transformation; approximate analytical expressions that require the selection of arbitrary constants and cutoff frequencies are no longer necessary. For constant Q, the dispersive body wave velocity, p(v), is found to be p(v) = (p(v<sub>N</sub>)/(1+(1/2Q H(-v)/v)) where H denotes numerical Hilbert transformation, p(v) is the phase velocity at the frequency v, and p(v<sub>N</sub>) is the phase velocity at Nyquist. From (1) it is possible to estimate Q in the time domain by measuring the amount of increase, ΔW, of the wavelet breadth after a traveltime, Q=(2Δ𝛕)/(𝝅ΔW) The inverse problem, i.e., the determination of Q and velocity is also investigated using singular value decomposition (SVD). The sparse matrices encountered in the acquisition of conventional reflection seismology data result in a system of linear equations of the form AX = B, with A the design matrix, X the solution vector, and B the data vector. The system of normal equations is AᵀAX = AᵀB where the least-squares estimate of X = X = V(1/S)UᵀB and the SVD of A is A = USVᵀ. A technique to improve the sparsity pattern prior to decomposition is described. From an application of equation (2) using reference reflections from shallower reflectors, crystalline rocks in South Carolina over the depth interval from about 5 km to 10 km yield values of Qin the range Q = 250 - 300. Non-standard recording geometries ( "Q-spreads") and vibroseis recording procedures are suggested to minimize matrix sparseness and increase the usable frequency bandwidth between zero and Nyquist. The direct detection of body wave dispersion by conventional vibroseis techniques may be useful to distinguish between those crustal volumes that are potentially seismogenic and those that are not. Such differences may be due to variations in fracture density and therefore water content in the crust. / Ph. D.
76

Fluid content effect on acoustic impedance and limits of direct detection capability : illustrated on an offshore prospect

Catto, Antonio José 24 October 2014 (has links)
The presence of gas and oil in some sand formations decreases the seismic velocity and density to such an extent that anomalously large reflections coefficients are encountered at fluid contacts. Geerstma and Gassmann's theories are equivalent and provide a good way to study the physical properties that affect the elastic behavior of the porous rock. The fluid-contact reflectivity (gas-water, oil-water) can be well estimated based on the brine saturated velocity alone. A comparison between the estimated and observed fluid-contact reflectivities on seismic and well log data from an Offshore prospect showed a remarkable agreement. / text
77

Seismological and mineralogical studies of the world’s deepest gold-bearing horizon, the Carbon Leader Reef, West Wits Line goldfields (South Africa): implications for its poor seismic reflective character

Nkosi, Nomqhele Zamaswazi January 2016 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand in fulfilment of the requirements for the degree of Master of Science, School of Geosciences. Johannesburg, 2016. / The measurements of physical rock properties, seismic velocities in particular, associated with ore deposits and their host rocks are crucial in interpreting seismic data collected at the surface for mineral exploration purposes. The understanding of the seismic velocities and densities of rock units can help to improve the understanding of seismic reflections and thus lead to accurate interpretations of the subsurface geology and structures. This study aims to determine the basic acoustic properties and to better understand the nature of the seismic reflectivity of the world’s deepest gold-bearing reef, the Carbon Leader Reef (CLR). This was done by measuring the physical properties (ultrasonic velocities and bulk densities) as well as conducting mineralogical analyses on drill-core samples. Ultrasonic measurements of P- and S-wave velocities were determined at ambient and elevated stresses, up to 65 MPa. The results show that the quartzite samples overlying and underlying the CLR exhibit similar velocities (~ 5028 m/s-5480 m/s and ~ 4777 m/s-5211 m/s, respectively) and bulk densities (~ 2.68 g/cm3 and 2.66 g/cm3). This is due to similar mineralogy and chemical compositions observed within the units. However, the CLR has slightly higher velocity (~ 5070 m/s-5468 m/s) and bulk density (~ 2.78 g/cm3) than the surrounding quartzite units probably due to higher pyrite content in the reef, which increases the velocity. The hangingwall Green Bar shale exhibits higher velocity (5124 m/s-5914 m/s) and density values (~ 2.89 g/cm3-3.15 g/cm3) compared to all the quartzite units (including the CLR), as a result of its finer grain size and higher iron and magnesium content. In the data set it is found that seismic velocities are influence by silica, iron and pyrite content as well as the grain size of the samples, i.e., seismic velocities increase with (1) decreasing silica content, (2) increasing iron and pyrite content and (3) decreasing grain size. Reflection coefficients calculated using the seismic velocities and densities at the boundaries between the CLR and its hangingwall and footwall units range between ~0.02 and 0.05, which is below the suggested minimum of 0.06 required to produce a strong reflection between two lithological units. This suggests that reflection seismic methods might not be able to directly image the CLR as a prominent reflector, as observed from the seismic data. The influence of micro-cracks is observed in the unconfined uniaxial compressive stress tests where two regimes can be identified: (1) From 0 - 25 MPa the P-wave velocities increase with progressive loading, but at different rates in shale and quartzite rocks owing to the presence of micro-cracks and (2) above stresses of ~20 - 25 MPa, the velocity stress relationship becomes constant, possibly indicating total closure of micro-cracks. The second part of the study integrates 3D reflection seismic data, seismic attributes and information from borehole logs and underground mapping to better image and model important fault systems that might have a direct effect on mining in the West Wits Line goldfields. 3D seismic data have delineated first-, second- and third-order scale faults that crosscut key gold-bearing horizons by tens to hundreds of metres. Applying the modified seismic attribute has improved the imaging of the CLR by sharpening the seismic traces. Conventional interpretation of the seismic data shows that faults with throws greater than 25 m can be clearly seen. Faults with throws less than 25 m were identified through volumetric (edge enhancement and ant-tracking seismic attributes) and horizon-based (dip, dip-azimuth and edge detection seismic attributes) seismic attribute analysis. These attributes provided more accurate mapping of the depths, dip and strikes of the key seismic horizon (Roodepoort shale), yielding a better understanding of the relationship between fault activity, methane migration and relative chronology of tectonic events in the goldfield. The strato-structural model derived for the West Wits Line gold mines can be used to guide future mine planning and designs to (1) reduce the risks posed by mining activities and (2) improve the resource evaluation of the goldbearing reefs in the West Wits Line goldfields. / LG2017
78

Extensional subsidence, inversion and volumetric contraction in the Bass Basin of Australia : a seismic study / Pradipta Kumar Das.

Das, Pradipta Kumar January 2001 (has links)
"August, 2001" / Bibliography: leaves 173-183. / xvi, 184, 12 leaves : ill. (some col.), maps, plates (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / "The primary objective of the study was to gain a better understanding of the tectonostratigraphic evolutionary history of the Bass Basin. In particular, the study has focussed on mapping and analysing all the faults and fault patterns in the Bass Basin in relation to the subsidence history and its influence on sedimentation and hydrocarbon potential of the basin. The reason why the Durroon area and the Bass area behaved differently in response to extensional stresses was investigated. As a final outcome, it was thought important to clarify some of the existing disagreement about the broad tectonic and structural history of the basin and in particular to separate the influence of the Otway and Tasman Sea rifting episodes on the sedimentation history of the Bass and Durroon area. The study also aimed at investigating the occurence in the basin and nature of a recently recognised fault system, a polygonal fault system." --p. 2. / Thesis (Ph.D.)--University of Adelaide, National Centre for Petroleum Geology and Geophysics, 2002
79

4D seismic analysis of the Hibernia oil field, Grand Banks, Canada /

Wright, Richard James, January 2004 (has links)
Thesis (Ph.D.)--Memorial University of Newfoundland, 2005. / Bibliography: leaves 206-212. Also available online.
80

Computer modeling of the seismic response to various cut-and-fill geometrics

Ade, William C. 03 June 2011 (has links)
A range of seismic images likely to be encountered from stream-cut channels is examined with ray tracing computer modeling. The channel shapes, sizes, depths of burial, and associated geologies are examined to determine their effect on seismic images, waveforms, and ultimate interpretation. The study uses channel geometries taken from the Pulaski, Bush City, Moberly, and Nesvacilka channels which are assumed to he at various depths of burial. Results show that seismic sections often do not approximate geologic cross sections, that seemingly random reflections have geologic meaning, and that channels can be detected by their effects on the amplitude and shape of lower reflectors. The resolution of channels is summarized in tables of resolvability.Ball State UniversityMuncie, IN 47306

Page generated in 0.1227 seconds