• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimisation d'une source vibratoire pour la détection des cavités souterraines par sismique réflexion haute résolution / Optimization of a vibratory source for cavity detection by high resolution seismic

Kosecki, Arkadiusz 07 December 2009 (has links)
L’objectif principal de cette thèse est de développer et d’optimiser les outils d’acquisition de la technique de Sismique réflexion haute résolution (SHR) afin d’améliorer ses performances pour la détection des cavités souterraines. Il est communément admis que l’imagerie SHR est d’autant plus complexe que la profondeur de la cible est petite. Les travaux menés dans le cadre de cette thèse devraient remédier à certains problèmes les plus critiques identifiés lors des applications de la SHR.L’utilisation des sources vibratoires présente des avantages indéniables (non destructivité, contrôle du signal émis...) par rapport aux sources « classiques » (i.e. impulsionnelles, destructives) mais leur application optimale nécessite un choix correct du signal émis.Ainsi, les travaux de recherche réalisés ont permis de (1) développer un système complet de pilotage par ordinateur d’une mini-source vibratoire destinée à l’imagerie SHR, (2) développer une méthode de génération de signaux émis. En établissant un lien entre le signal d’entrée et l’image sismique obtenue, cette procédure offre la possibilité à l’utilisateur de choisir le signal émis en fonction des conditions de terrain, et des objectifs des mesures, (3) tester le fonctionnement du système développé avec plusieurs mini-vibrateurs.Le système développé ainsi est testé et validé dans les tests à petite échelle. Ensuite, il a été utilisé dans les conditions réelles avec l’objectif « détection des cavités » dans le contexte salin (anciennes mines de sel en Lorraine, profondeur : 160 m - 180 m) et les marnières de Haute Normandie (anciennes carrières de craie, profondeur : 15 m - 45 m) / The main objective of this thesis is to develop and optimize the acquisition tools for High Resolution Reflection Seismic (HRS) technique in order to improve its performances in the detection of underground cavities. It is commonly admitted that HRS imaging becomes more complicated with when the depth of interest is decreased. The work carried out in the frame of this thesis aims to bring solutions to some of the most critical problems identified in application of the HRS.The vibratory sources show undeniable advantages (non destructivity, controllable output signal) over “classic” (impulsive, destructive) sources. However, the optimal use of these sources depends on the proper choice of emitted signal.Thus, the research work carried out resulted in (1) development of a complete, computer-based vibrator control system allowing piloting small vibratory source intended to use for HRS surveys, (2) development of a method for generating the source signal. The proposed procedure links the entry signal with seismic image and thus allows the choice of the signal in terrain conditions and with regard to the measurement goals, (3) extensive testing of the developed system with several portable vibratory sources.The developed system was tested and validated in small-scale tests. Afterwards it was used in real conditions with the goal of “cavity detection” in salt-mining context (old salt mines in Lorraine region at depths between 160 m and 180 m) as well as in chalk-mining area (ancient marl-pit quarries in the Normandy region at depths 15 m - 45 m)
2

Seismic Investigations at the Ketzin CO2 Injection Site, Germany: Applications to Subsurface Feature Mapping and CO2 Seismic Response Modeling

Kazemeini, Sayed Hesammoddin January 2009 (has links)
3D seismic data are widely used for many different purposes. Despite different objectives, a common goal in almost all 3D seismic programs is to attain better understanding of the subsurface features. In gas injection projects, which are mainly for Enhanced Oil Recovery (EOR) and recently for environmental purposes, seismic data have an important role in the gas monitoring phase. This thesis deals with a 3D seismic investigation at the CO2 injection site at Ketzin, Germany. I focus on two critical aspects of the project: the internal architecture of the heterogeneous Stuttgart reservoir and the detectability of the CO2 response from surface seismic data. Conventional seismic methods are not able to conclusively map the internal reservoir architecture due to their limited seismic resolution. In order to overcome this limitation, I use the Continuous Wavelet Transform (CWT) decomposition technique, which provides frequency spectra with high temporal resolution without the disadvantages of the windowing process associated with the other techniques. Results from applying this technique reveal more of the details of sand bodies within the Stuttgart Formation. The CWT technique also helps to detect and map remnant gas on the top of the structure. In addition to this method, I also show that the pre-stack spectral blueing method, which is presented for the first time in this research, has an ability to enhance seismic resolution with fewer artifacts in comparison with the post-stack spectral blueing method. The second objective of this research is to evaluate the CO2 response on surface seismic data as a feasibility study for CO2 monitoring. I build a rock physics model to estimate changes in elastic properties and seismic velocities caused by injected CO2. Based on this model, I study the seismic responses for different CO2 injection geometries and saturations using one dimensional (1D) elastic modeling and two dimensional (2D) acoustic finite-difference modeling. Results show that, in spite of random and coherent noises and reservoir heterogeneity, the CO2 seismic response should be strong enough to be detectable on surface seismic data. I use a similarity-based image registration method to isolate amplitude changes due to the reservoir from amplitude changes caused by time shifts below the reservoir. In support of seismic monitoring using surface seismic data, I also show that acoustic impedance versus Poisson’s ratio cross-plot is a suitable attribute for distinguishing gas-bearing sands from brine-bearing sands. / CO2SINK Project

Page generated in 0.107 seconds