Spelling suggestions: "subject:"eismic risk analysis"" "subject:"zeismic risk analysis""
1 |
Forecasting earthquake losses in port systemsBurden, Lindsay Ivey 20 February 2012 (has links)
Ports play a critical role in transportation infrastructure, but are vulnerable to seismic hazards. Downtime and reduced throughput from seismic damage in ports results in significant business interruption losses for port stakeholders. Current risk management practices only focus on the effect of seismic hazards on individual port structures. However, damage and downtime of these structures has a significant impact on the overall port system's ship handling operations and the regional, national, and even international economic impacts that result from extended earthquake-induced disruption of a major container port. Managing risks from system-wide disruptions resulting from earthquake damage has been studied as a central element of a Grand Challenge project sponsored by the National Science Foundation Network for Earthquake Engineering Simulation (NEES) program. The following thesis presents the concepts and methods developed for the seismic risk management of a port-wide system of berths. In particular the thesis discusses the framework used to calculated port losses: the use of spatially correlated ground motion intensity measures to estimate damage to pile-supported marginal wharves and container cranes of various configurations via fragility relationships developed by project team members, repair costs and downtimes subsequently determined via repair models for both types of structures, and the impact on cargo handling operations calculated via logistical models of the port system. Results are expressed in the form of loss exceedance curves than include both repair/replacement costs and business interruption losses. The thesis also discusses how the results from such an analysis might be used by port decision makers to make more informed decisions in design, retrofit, operational, and other seismic risk management options.
|
2 |
On the Seismic Design of Structures with Tilting Located within a Seismic RegionValenzuela-Beltrán, Federico, Ruiz, Sonia, Reyes-Salazar, Alfredo, Gaxiola-Camacho, J. 07 November 2017 (has links)
A reliability-based criterion to estimate strength amplification factors for buildings with asymmetric yielding located within a seismic region presenting different soil conditions is proposed and applied. The approach involves the calculation of the mean annual rate of exceedance of structural demands of systems with different levels of asymmetric yielding. Two simplified mathematical expressions are developed considering different soil conditions of the valley of Mexico. The mathematical expressions depend on the ductility of the structural systems, their level of asymmetric yielding, their fundamental vibration period and the dominant period of the soil. In addition, the proposed expressions are compared with that recommended by the current Mexico City Building Code (MCBC). Since the expressions are developed with the help of simplified structural systems, the validity of such expressions is corroborated by comparing the expected ductility demand of multi-degree of freedom (MDOF) structural systems with respect to that of their equivalent simplified systems. Both structural representations are associated with a given annual rate of exceedance value of an engineering demand parameter. The expressions proposed in this study will be incorporated in the new version of the MCBC.
|
3 |
Development Of A Software For Seismic Damage Estimation: Case StudiesKucukcoban, Sezgin 01 July 2004 (has links) (PDF)
The occurrence of two recent major earthquakes, 17 August 1999 Mw = 7.4 Izmit and 12 November 1999 Mw = 7.1 Dü / zce, in Turkey prompted seismologists and geologists to conduct studies to predict magnitude and location of a potential earthquake that can cause substantial damage in Istanbul. Many scenarios are available about the extent and size of the earthquake. Moreover, studies have recommended rough estimates of risk areas throughout the city to trigger responsible authorities to take precautions to reduce the casualties and loss for the earthquake expected.
Most of these studies, however, adopt available procedure by modifying them for the building stock peculiar to Turkey. The assumptions and modifications made are too crude and thus are believed to introduce significant deviations from the actual case. To minimize these errors and use specific damage functions and capacity curves that reflect the practice in Turkey, a study was undertaken to predict damage pattern and distribution in Istanbul for a scenario earthquake proposed by Japan International Cooperation Agency (JICA). The success of these studies strongly depends on the quality and validity of building inventory and site property data.
Building damage functions and capacity curves developed from the studies conducted in Middle East Technical University are used. A number of proper attenuation relations are employed. The study focuses mainly on developing a software to carry out all computations and present results. The results of this study reveal a more reliable picture of the physical seismic damage distribution expected in Istanbul.
|
4 |
Approche probabiliste dans la détermination des courbes de vulnérabilité des structures en génie civil / Probabilistic approach in determining the vulnerability curves of civil engineering structuresMekki, Mohammed 07 April 2015 (has links)
Dans le contexte du calcul sismique basé sur la notion de performance, lesingénieurs se trouvent confrontés à une tâche difficile pour estimer la performance etévaluer les risques des systèmes sol-structure en interaction. Afin d’accomplir cette tâcheavec succès, toutes les sources d'incertitudes aléatoires et épistémiques doivent être prisesen compte au cours du processus de conception. Ainsi, des méthodes appropriées sontnécessaires pour l'étude de la propagation de l'incertitude des paramètres du systèmedécrivant la structure, le sol, et les charges appliquées aux réponses structurelles endéfinissant des états limites de performance. L’objectif de cette thèse est de contribuer àl’étude du comportement sismique des structures en interaction avec le sol et d’offrir denouveaux outils pour le traitement de problèmes pertinents, orientés vers la nouvellephilosophie de conception parasismique des structures : la conception basée sur laperformance (performance-based design). Cet axe de recherche structure ce travail dedoctorat. La problématique s’inscrit dans le cadre de proposition de modèles simplifiés afind’aborder un problème compliqué tel que l’interaction sol-structure (ISS). Lecomportement non linéaire de la structure est déterminé par une approche capacitive baséesur la performance sismique telle que la méthode N2 proposée par P. Fajfar. Dans saversion originale, cette méthode considère que la structure est encastrée à sa base,négligeant ainsi l’ISS. Il s'agit d'une extension de la méthode N2 et que nous appelleronsN2-ISS. A notre connaissance, il n'existe pas d'études qui ont intégré l'ISS dans ce type deformalisme. Pour examiner la validité et la fiabilité du modèle présenté, une analysecomparative a été faite entre l'approche que nous proposons et trois autres méthodes: 1) laméthode introduite dans le code BSSC 1997, 2) la méthode proposée par Avilès & Perez–Rocha (2003) ainsi que 3) la méthode dynamique temporelle non linéaire. Les résultatsobtenus ont montré que la réponse en déplacement de la structure était assez proche dansles quatre méthodes.Les courbes de fragilité sont établies en tenant compte des effets de l’ISS et desincertitudes associées au chargement (mouvement du sol), aux propriétés de la structure,du sol, et de la fondation (impédances, ...). L’incertitude épistémique est égalementconsidérée de manière indirecte suite à la comparaison entre deux procédures d'évaluationdes états d’endommagements (Méthode de Park & Ang et Méthode de RISK-UE). L'étudea abouti aussi à une caractérisation préliminaire du risque sismique dans une partie de laville d'Oran dont les caractéristiques géologiques et géotechniques étaient disponibles.Cette étude a permis la cartographie du dommage et d'étudier la la vulnérabilité sismiquedes bâtiments. / In the context of performance-based earthquake engineering (PBEE), a challengingtask for structural engineers is to provide performance and risk assessment for structures orsoil-structure interaction (SSI) systems. In order to fulfill this task successfully, all relevantsources of aleatory and epistemic uncertainties must be accounted for during the designprocess. Thus, proper methods are required for the study of uncertainty propagation frommodel parameters describing the structure, the soil, and the applied loads to structuralresponses by defining some performance limit states. The objective of this thesis is tocontribute to the study of the seismic behavior of structures interacting with soil andprovide new tools for the treatment of relevant issues facing the new philosophy of seismicdesign of structures: performance-based design. The objective of this thesis is to contributeto the study of the seismic behavior of structures interacting with soil and provide newtools for the treatment of relevant issues facing the new philosophy of seismic design ofstructures: (performance-based design). This research structure this doctoral work. Theissue is part of proposed simplified models to address a complicated problem such as soilstructureinteraction (SSI). The nonlinear behavior of the structure is determined by acapacitive approach based on the seismic performance as N2 method proposed by P.Fajfar. In its original version, this method considers that the structure is fixed at its base,thus neglecting the ISS. The new proposed method called N2-SSI is an extension of the N2method. To our knowledge, there are no studies that have joined the SSI ISS in this type offormalism. The proposed approach is validated and compared with time history analysis,Building Seismic Safety Council (BSSC) method (NEHRP, 2003), and a method proposedby Aviles and Perez-Rocha (2003). The results obtained showed that the responsedisplacement of the structure was fairly close in the four methods.The fragility curves are established taking into account the effects of the ISS anddifferent uncertainty sources: the load (input ground motion), the soil, the structure and theSSI (impedances, ...). Epistemic uncertainty was investigated through comparison betweentwo different approaches in assessing damage states (Park and Ang and Risk-UE). Thestudy also resulted in a preliminary characterization of the seismic risk in a part of the Orancity, where geological and geotechnical characteristics were available. This study allowedthe mapping of the damage and the study of the seismic vulnerability of buildings.
|
5 |
Seismic probabilistic safety assessment and risk control of nuclear power plants in Northwest EuropeMedel Vera, Carlos Pablo January 2016 (has links)
Nuclear power plays a crucial role in energy supply in the world: around 15% of the electricity generated worldwide is provided from nuclear stations avoiding around 2.5 billion tonnes of CO2 emissions. As of January 2016, 442 reactors that generated 380+ GW were in operation and 66 new reactors were under construction. The seismic design of new nuclear power plants (NPPs) has gained much interest after the high-profile Fukushima Dai-ichi accident. In the UK, a tectonically stable continental region that possesses medium-to-low seismic activity, strong earthquakes capable of jeopardising the structural integrity of NPPs, although infrequent, can still occur. Despite that no NPP has been built in Great Britain after 1995, a New Build Programme intended to build 16 GW of new nuclear capacity by 2030 is currently under way. This PhD project provides a state-of-the-art framework for seismic probabilistic safety assessment and risk control of NPPs in Northwest Europe with particular application to the British Isles. It includes three progressive levels: (i) seismic input, (ii) seismic risk analysis, and (iii) seismic risk control. For seismic input, a suitable model to rationally define inputs in the context of risk assessments is proposed. Such a model is based on the stochastic simulation of accelerograms that are compatible with seismic scenarios defined by magnitude 4 < Mw < 6.5, epicentral distance 10 km < Repi < 100 km, and different types of soil (rock, stiff soil and soft soil). It was found to be a rational approach that streamlines the simulation of accelerograms to conduct nonlinear dynamic analyses for safety assessments. The model is a function of a few variables customarily known in structural engineering projects. In terms of PGA, PGV and spectral accelerations, the simulated accelerograms were validated by GMPEs calibrated for the UK, Europe and the Middle East, and other stable continental regions. For seismic risk analysis, a straightforward and logical approach to probabilistically assess the risk of NPPs based on the stochastic simulation of accelerograms is studied. It effectively simplifies traditional approaches: for seismic inputs, it avoids the use of selecting/scaling procedures and GMPEs; for structural outputs, it does not use Monte Carlo algorithms to simulate the damage state. However, it demands more expensive computational resources as a large number of nonlinear dynamic analyses are needed. For seismic risk control, strategies to control the risk using seismic protection systems are analysed. This is based on recent experience reported elsewhere of seismically protected nuclear reactor buildings in other areas of medium-to-low seismic activity. Finally, a scenario-based incremental dynamic analysis (IDA) is proposed aimed at the generation of surfaces for unacceptable performance of NPPs as function of earthquake magnitude and distance. It was found that viscous-based devices are more efficient than hysteretic-based devices in controlling the seismic risk of NPPs in the UK. Finally, using the proposed scenario-based IDA, it was found that when considering all controlling scenarios for a representative UK nuclear site, the risk is significantly reduced ranging from 3 to 5 orders of magnitude when using viscous-based devices.
|
Page generated in 0.0494 seconds