Spelling suggestions: "subject:"gelberg class"" "subject:"helberg class""
1 |
Riemann'o hipotezės Speiser'io ekvivalentas / On the speiser equivalent for the riemann hypothesisŠimėnas, Raivydas 04 July 2014 (has links)
A. Speiser'is parodė, kad Riemann'o hipotezė yra ekvivalenti tam, kad Riemann'o dzeta funkcijos išvestinė neturi netrivialių nulių į kairę nuo kritinės tiesės. Kiekybinis šio fakto rezultatas buvo pasiektas N. Levinsono ir H. Montgomerio. Šie rezultatai buvo apibendrinti daugeliui dzeta funkcijų, kurioms tikimasi, kad Riemann'o hipotezė galioja. Šiame darbe mes apibendriname Speiser'io ekvivalentą dzeta-funkcijoms. Mes tiriame sąryšį tarp netrivialių nulių išplėstinės Selbergo klasės funkcijoms ir jų išvestinėms šiame regione. Šiai klasei priklauso ir funkcijos, kurioms Riemann'o hipotezė neteisinga. Kaip pavyzdį, mes skaitiniu būdu tiriame sąryšius tarp Dirichlet L-funkcijų ir jų išvestinių tiesinių kombinacijų. / A. Speiser showed that the Riemann hypothesis is equivalent to the absence of non-trivial zeros of the derivative of the Riemann zeta-function left of the critical line. The quantitative version of this result was obtained by N. Levinson and H. Montgomery. This result (or the quantitative version of this result proved by N. Levinson and H. Montgomery) were generalized for many zeta-functions for which the Riemann hypothesis is expected. Here we generalize the Speiser equivalent for zeta-functions. We also investigate the relationship between the on-trivial zeros of the extended Selberg class functions and of their derivatives in this region. This class contains zeta functions for which Riemann hypothesis is not true. As an example, we study the relationship between the trajectories of zeros of linear combinations of Dirichlet $L$-functions and of their derivatives computationally.
|
2 |
Variations of Li's criterion for an extension of the Selberg classDroll, ANDREW 09 August 2012 (has links)
In 1997, Xian-Jin Li gave an equivalence to the classical Riemann hypothesis,
now referred to as Li's criterion, in terms of the non-negativity of a particular
infinite sequence of real numbers. We formulate the analogue of Li's criterion as
an equivalence for the generalized quasi-Riemann hypothesis for functions in an
extension of the Selberg class, and give arithmetic formulae for the corresponding
Li coefficients in terms of parameters of the function in question. Moreover, we
give explicit non-negative bounds for certain sums of special values of polygamma
functions, involved in the arithmetic formulae for these Li coefficients, for a wide class of functions. Finally, we discuss an existing result on correspondences between
zero-free regions and the non-negativity of the real parts of finitely many Li
coefficients. This discussion involves identifying some errors in the original source work which seem to render one of its theorems conjectural. Under an appropriate
conjecture, we give a generalization of the result in question to the case of Li coefficients corresponding to the generalized quasi-Riemann hypothesis. We also
give a substantial discussion of research on Li's criterion since its inception, and
some additional new supplementary results, in the first chapter. / Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2012-07-31 13:14:03.414
|
3 |
Sur la distribution des valeurs de la fonction zêta de Riemann et des fonctions L au bord de la bande critqueLamzouri, Youness January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
4 |
Sur la distribution des valeurs de la fonction zêta de Riemann et des fonctions L au bord de la bande critqueLamzouri, Youness January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
Page generated in 0.0599 seconds