• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Algoritmo kNN para previsão de dados temporais: funções de previsão e critérios de seleção de vizinhos próximos aplicados a variáveis ambientais em limnologia / Time series prediction using a KNN-based algorithm prediction functions and nearest neighbor selection criteria applied to limnological data

Ferrero, Carlos Andres 04 March 2009 (has links)
A análise de dados contendo informações sequenciais é um problema de crescente interesse devido à grande quantidade de informação que é gerada, entre outros, em processos de monitoramento. As séries temporais são um dos tipos mais comuns de dados sequenciais e consistem em observações ao longo do tempo. O algoritmo k-Nearest Neighbor - Time Series Prediction kNN-TSP é um método de previsão de dados temporais. A principal vantagem do algoritmo é a sua simplicidade, e a sua aplicabilidade na análise de séries temporais não-lineares e na previsão de comportamentos sazonais. Entretanto, ainda que ele frequentemente encontre as melhores previsões para séries temporais parcialmente periódicas, várias questões relacionadas com a determinação de seus parâmetros continuam em aberto. Este trabalho, foca-se em dois desses parâmetros, relacionados com a seleção de vizinhos mais próximos e a função de previsão. Para isso, é proposta uma abordagem simples para selecionar vizinhos mais próximos que considera a similaridade e a distância temporal de modo a selecionar os padrões mais similares e mais recentes. Também é proposta uma função de previsão que tem a propriedade de manter bom desempenho na presença de padrões em níveis diferentes da série temporal. Esses parâmetros foram avaliados empiricamente utilizando várias séries temporais, inclusive caóticas, bem como séries temporais reais referentes a variáveis ambientais do reservatório de Itaipu, disponibilizadas pela Itaipu Binacional. Três variáveis limnológicas fortemente correlacionadas são consideradas nos experimentos de previsão: temperatura da água, temperatura do ar e oxigênio dissolvido. Uma análise de correlação é realizada para verificar se os dados previstos mantem a correlação das variáveis. Os resultados mostram que, o critério de seleção de vizinhos próximos e a função de previsão, propostos neste trabalho, são promissores / Treating data that contains sequential information is an important problem that arises during the data mining process. Time series constitute a popular class of sequential data, where records are indexed by time. The k-Nearest Neighbor - Time Series Prediction kNN-TSP method is an approximator for time series prediction problems. The main advantage of this approximator is its simplicity, and is often used in nonlinear time series analysis for prediction of seasonal time series. Although kNN-TSP often finds the best fit for nearly periodic time series forecasting, some problems related to how to determine its parameters still remain. In this work, we focus in two of these parameters: the determination of the nearest neighbours and the prediction function. To this end, we propose a simple approach to select the nearest neighbours, where time is indirectly taken into account by the similarity measure, and a prediction function which is not disturbed in the presence of patterns at different levels of the time series. Both parameters were empirically evaluated on several artificial time series, including chaotic time series, as well as on a real time series related to several environmental variables from the Itaipu reservoir, made available by Itaipu Binacional. Three of the most correlated limnological variables were considered in the experiments carried out on the real time series: water temperature, air temperature and dissolved oxygen. Analyses of correlation were also accomplished to verify if the predicted variables values maintain similar correlation as the original ones. Results show that both proposals, the one related to the determination of the nearest neighbours as well as the one related to the prediction function, are promising
2

Algoritmo kNN para previsão de dados temporais: funções de previsão e critérios de seleção de vizinhos próximos aplicados a variáveis ambientais em limnologia / Time series prediction using a KNN-based algorithm prediction functions and nearest neighbor selection criteria applied to limnological data

Carlos Andres Ferrero 04 March 2009 (has links)
A análise de dados contendo informações sequenciais é um problema de crescente interesse devido à grande quantidade de informação que é gerada, entre outros, em processos de monitoramento. As séries temporais são um dos tipos mais comuns de dados sequenciais e consistem em observações ao longo do tempo. O algoritmo k-Nearest Neighbor - Time Series Prediction kNN-TSP é um método de previsão de dados temporais. A principal vantagem do algoritmo é a sua simplicidade, e a sua aplicabilidade na análise de séries temporais não-lineares e na previsão de comportamentos sazonais. Entretanto, ainda que ele frequentemente encontre as melhores previsões para séries temporais parcialmente periódicas, várias questões relacionadas com a determinação de seus parâmetros continuam em aberto. Este trabalho, foca-se em dois desses parâmetros, relacionados com a seleção de vizinhos mais próximos e a função de previsão. Para isso, é proposta uma abordagem simples para selecionar vizinhos mais próximos que considera a similaridade e a distância temporal de modo a selecionar os padrões mais similares e mais recentes. Também é proposta uma função de previsão que tem a propriedade de manter bom desempenho na presença de padrões em níveis diferentes da série temporal. Esses parâmetros foram avaliados empiricamente utilizando várias séries temporais, inclusive caóticas, bem como séries temporais reais referentes a variáveis ambientais do reservatório de Itaipu, disponibilizadas pela Itaipu Binacional. Três variáveis limnológicas fortemente correlacionadas são consideradas nos experimentos de previsão: temperatura da água, temperatura do ar e oxigênio dissolvido. Uma análise de correlação é realizada para verificar se os dados previstos mantem a correlação das variáveis. Os resultados mostram que, o critério de seleção de vizinhos próximos e a função de previsão, propostos neste trabalho, são promissores / Treating data that contains sequential information is an important problem that arises during the data mining process. Time series constitute a popular class of sequential data, where records are indexed by time. The k-Nearest Neighbor - Time Series Prediction kNN-TSP method is an approximator for time series prediction problems. The main advantage of this approximator is its simplicity, and is often used in nonlinear time series analysis for prediction of seasonal time series. Although kNN-TSP often finds the best fit for nearly periodic time series forecasting, some problems related to how to determine its parameters still remain. In this work, we focus in two of these parameters: the determination of the nearest neighbours and the prediction function. To this end, we propose a simple approach to select the nearest neighbours, where time is indirectly taken into account by the similarity measure, and a prediction function which is not disturbed in the presence of patterns at different levels of the time series. Both parameters were empirically evaluated on several artificial time series, including chaotic time series, as well as on a real time series related to several environmental variables from the Itaipu reservoir, made available by Itaipu Binacional. Three of the most correlated limnological variables were considered in the experiments carried out on the real time series: water temperature, air temperature and dissolved oxygen. Analyses of correlation were also accomplished to verify if the predicted variables values maintain similar correlation as the original ones. Results show that both proposals, the one related to the determination of the nearest neighbours as well as the one related to the prediction function, are promising
3

Análise de desempenho de redes p2p com protocolo push/pull para distribuição de vídeo na presença de nós não-cooperativos. / Performance analysis of P2P networks with protocol "push / pull" for video distribution in the presence of nodes non-cooperative.

Flávia Marinho de Lima 20 July 2010 (has links)
O uso de Internet para a distribuição de fluxos de vídeo tem se mostrado uma tendência atual e traz consigo grandes desafios. O alicerce sobre qual a Internet está fundamentada, comutação por pacotes e arquitetura cliente-servidor, não proporciona as melhores condições para este tipo de serviço. A arquitetura P2P (peer-to-peer) vem sendo considerada como infraestrutura para a distribuição de fluxos de vídeo na Internet. A idéia básica da distribuição de vídeo com o suporte de P2P é a de que os vários nós integrantes da rede sobreposta distribuem e encaminham pedaços de vídeo de forma cooperativa, dividindo as tarefas, e colocando à disposição da rede seus recursos locais. Dentro deste contexto, é importante investigar o que ocorre com a qualidade do serviço de distribuição de vídeo quando a infraestrutura provida pelas redes P2P é contaminada por nós que não estejam dispostos a cooperar, já que a base desta arquitetura é a cooperação. Neste trabalho, inicialmente é feito um estudo para verificar o quanto a presença de nós não-cooperativos pode afetar a qualidade da aplicação de distribuição de fluxo de vídeo em uma rede P2P. Com base nos resultados obtidos, é proposto um mecanismo de incentivo à cooperação para que seja garantida uma boa qualidade de vídeo aos nós cooperativos e alguma punição aos nós não-cooperativos. Os testes e avaliações foram realizados utilizando-se o simulador PeerSim. / Using the Internet for video stream is becoming a trend, but it brings many challenges. The foundation upon which the Internet is based, packet switching and client-server architecture, is not suitable for this type of service. P2P (peer to peer) architecture is being considered as an infrastructure for video streams on the Internet. The basic idea is that the several members of the overlay network cooperate in the task of distributing and fowarding video chunks, making available their local resources to the network. Within this context, it is important to investigate what happens to the quality of service of the video distribution when the infrastructure provided by the P2P network is contaminated with free-riding nodes, which are not willing to cooperate, since the basis of this architecture is cooperation. In this work, study is initially carried out to check how the presence of uncooperative nodes can affect the quality of the distribution application of video streaming on a P2P network. Based on these results, a mechanism is proposed to encourage cooperation in order to be guaranteed a video with good quality to the cooperative nodes and some punishment for those uncooperative. The tests and evaluations were performed using the PeerSim simulator.
4

Análise de desempenho de redes p2p com protocolo push/pull para distribuição de vídeo na presença de nós não-cooperativos. / Performance analysis of P2P networks with protocol "push / pull" for video distribution in the presence of nodes non-cooperative.

Flávia Marinho de Lima 20 July 2010 (has links)
O uso de Internet para a distribuição de fluxos de vídeo tem se mostrado uma tendência atual e traz consigo grandes desafios. O alicerce sobre qual a Internet está fundamentada, comutação por pacotes e arquitetura cliente-servidor, não proporciona as melhores condições para este tipo de serviço. A arquitetura P2P (peer-to-peer) vem sendo considerada como infraestrutura para a distribuição de fluxos de vídeo na Internet. A idéia básica da distribuição de vídeo com o suporte de P2P é a de que os vários nós integrantes da rede sobreposta distribuem e encaminham pedaços de vídeo de forma cooperativa, dividindo as tarefas, e colocando à disposição da rede seus recursos locais. Dentro deste contexto, é importante investigar o que ocorre com a qualidade do serviço de distribuição de vídeo quando a infraestrutura provida pelas redes P2P é contaminada por nós que não estejam dispostos a cooperar, já que a base desta arquitetura é a cooperação. Neste trabalho, inicialmente é feito um estudo para verificar o quanto a presença de nós não-cooperativos pode afetar a qualidade da aplicação de distribuição de fluxo de vídeo em uma rede P2P. Com base nos resultados obtidos, é proposto um mecanismo de incentivo à cooperação para que seja garantida uma boa qualidade de vídeo aos nós cooperativos e alguma punição aos nós não-cooperativos. Os testes e avaliações foram realizados utilizando-se o simulador PeerSim. / Using the Internet for video stream is becoming a trend, but it brings many challenges. The foundation upon which the Internet is based, packet switching and client-server architecture, is not suitable for this type of service. P2P (peer to peer) architecture is being considered as an infrastructure for video streams on the Internet. The basic idea is that the several members of the overlay network cooperate in the task of distributing and fowarding video chunks, making available their local resources to the network. Within this context, it is important to investigate what happens to the quality of service of the video distribution when the infrastructure provided by the P2P network is contaminated with free-riding nodes, which are not willing to cooperate, since the basis of this architecture is cooperation. In this work, study is initially carried out to check how the presence of uncooperative nodes can affect the quality of the distribution application of video streaming on a P2P network. Based on these results, a mechanism is proposed to encourage cooperation in order to be guaranteed a video with good quality to the cooperative nodes and some punishment for those uncooperative. The tests and evaluations were performed using the PeerSim simulator.

Page generated in 0.0819 seconds