• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and fabrication of long wavelength vertical cavity lasers on GaAs substrates

Marcks von Würtemberg, Rickard January 2008 (has links)
Vertical cavity surface emitting lasers (VCSELs) are today a commodity on the short wavelength laser market due to the ease with which they are manufactured. Much effort has in the last decade been directed towards making long wavelength VCSELs as successful in the marketplace. This has not been achieved due to the much more difficult fabrication technologies needed for realising high performance long wavelength VCSELs. At one point, GaInNAs quantum wells gain regions grown on GaAs substrates seemed to be the solution as it enabled all-epitaxial VCSELs that could make use of high contrast AlGaAs-based distributed Bragg reflectors (DBRs) as mirrors and lateral selective oxidation for optical and electrical confinement, thereby mimicking the successful design of short wavelength VCSELs. Although very good device results were achieved, reproducible and reliable epitaxial growth of GaInNAs quantum wells proved difficult and the technology has not made its way into high-volume production. Other approaches to the manufacturing and material problems have been to combine mature InP-based gain regions with high contrast AlGaAs-based DBRs by wafer fusion or with high contrast dielectric DBRs. Commonly, a patterned tunnel junction provides the electrical confinement in these VCSELs. Excellent performance has been achieved in this way but the fabrication process is difficult. In this work, we have employed high strain InGaAs quantum wells along with large detuning between the gain peak and the emission wavelength to realize GaAs-based long wavelength VCSELs. All-epitaxial VCSELs with AlGaAs-based DBRs and lateral oxidation confinement were fabricated and evaluated. The efficiency of these VCSELs was limited due to the optical absorption in the doped DBRs. To improve the efficiency and manufacturability, two novel optical and electrical confinement schemes based on epitaxial regrowth of current blocking layers were developed. The first scheme is based on a single regrowth step and requires very precise processing. This scheme was therefore not developed beyond the first generation but single mode power of 0.3 mW at low temperature, -10ºC, was achieved. The second scheme is based on two epitaxial regrowth steps and does not require as precise processing. Several generations of this design were manufactured and resulted in record high power of 8 mW at low temperature, 5ºC, and more than 3 mW at high temperature, 85ºC. Single mode power was more modest with 1.5 mW at low temperature and 0.8 mW at high temperature, comparable to the performance of the single mode lateral oxidation confined VCSELs. The reason for the modest single mode power was found to be a non-optimal cavity shape after the second regrowth that leads to poor lateral overlap between the gain in the quantum wells and the intensity of the optical field. / QC 20100825
2

Antimonide Nanowires for Multispectral Infrared Photodetection

Robson, Mitchell January 2018 (has links)
Multispectral capabilities of nanowires (NWs) were explored for InAs and InAsSb NWs on Si(111) substrates. NWs were grown with the vapour-solid (VS) growth mode in a molecular beam epitaxy (MBE) system using an oxide template to control positions and diameters. Early attempts to integrate InSb NWs and silicon substrates proved unsuccessful. Instead studies of InAs NWs on silicon, and eventually InAsSb/InAs NWs on silicon were completed to achieve large-diameter, infrared (IR) sensitive photodetectors. InAs NWs were grown on silicon substrates to study their morphology characteristics and vertical NW yield. The five different growth modes explored were (1) Au-assisted vapour-liquid-solid (VLS), (2) positioned Au-assisted, (3) vapour solid, (4) positioned Au-assisted VLS using a patterned oxide mask (VLS-SAE), and (5) selective area epitaxy (SAE) using a patterned oxide mask. Optimal temperature and V/III flux ratios for achieving a high vertical yield were found for the SAE growth mode. Further understanding of the InAs SAE growth mode was gained through modeling of various oxide hole filling scenarios. Each scenario was defined by the arrival rates of the group III and group V materials to the holes. A parameter space is discussed for the growth of high yield InAs NWs, dependent on the V/III flux ratio and temperature of growth. Large diameter InAsSb NWs for IR absorptance were grown on silicon using a high yield InAs stem. Several NW array diameters were grown simultaneously on the same substrate to measure multispectral photodetection. Diameters were controlled by NW spacing. Fourier transform IR (FTIR) spectroscopy was used to measure absorptance in the NWs. NW diameters spanned 440 – 520 nm which resulted in enhanced absorptance in the short-wave IR region. Simulations of the HE11 resonances of the NW arrays were performed and compared with the FTIR measurements. Initial electrical measurements demonstrated a diameter-dependent photocurrent. / Thesis / Doctor of Philosophy (PhD)
3

Příprava nízkodimenzionálních III-V polovodičů / Preparation of low-dimensional III-V semiconductors

Stanislav, Silvestr January 2021 (has links)
Tato diplomová práce se zabývá přípravou nanostruktur z indium arsenidu (InAs) pomocí metody molekulární svazkové epitaxe (MBE). Důraz je kladen na výrobu struktur ve formě nanodrátů na křemíkovém substrátu. V úvodní části práce je popsána motivace pro studium III-V polovodičů a konkrétně InAs. Následující kapitoly vysvětlují dva základní princpy tvorby nanodrátů. Experimentální část práce diskutuje možnost přípravy indiového katalyzátoru pro samokatalyzovaný růst InAs nanodrátů v konkrétní aparatuře MBE. Následuje prezentace výsledků růstu InAs nanodrátů mechanismem selektivní epitaxe (SAE). Nanodráty byly vyrobeny na substrátu s termálně dekomponovaným oxidem a rovněž na substrátech s litograficky připravenou oxidovou maskou.

Page generated in 0.0509 seconds