Spelling suggestions: "subject:"dielective laser melting (SLM)"" "subject:"dielective laser belting (SLM)""
11 |
Konstrukce nanášecího systému pro zpracování dvou kovových prášků pomocí 3D tisku / Design of recoating system for processing of two metal powders using 3D PrintingGuráň, Radoslav January 2019 (has links)
The thesis deals with the design, construction and testing of two different metal powder coating equipment, which is able to work with SLM 280HL metal 3D printer. Since the field of multimaterial metal printing by selective laser melting (SLM) has not been significantly investigated yet, an overview of existing patents and possible approaches to the solution has been developed. The device has been successfully designed and a series of tests was carried out defining the issue of applying an improved head that uses a nozzle and an eccentric vibration motor. Based on the experiments performed, the coating parameters of the multimaterial layer of FeAm and 316L materials were defined. A control system for the partial process automation was created for the proposed device. The device was implemented in a printer that demonstrated both the ability to apply a single multimaterial layer of at least 50 m thickness, and the ability to produce a 3D multimaterial component comprised of up to 200 layers and containing material change across all axes.
|
12 |
Mechanické vlastnosti materiálů připravovaných pomocí procesu SLM / Mechanical properties of materials prepared by SLM processNopová, Klára January 2019 (has links)
The final thesis determined the properties of alloys formed from mixtures of powders processed by the SLM method. Powders of alloy AlSi12 and EN AW 2618 were fused in the proportion 75 wt. % AlSi12 + 25 wt. % 2618, 50 wt. % AlSi12 + 50 wt. % 2618 and 25 wt. % AlSi12 + 75 wt. % 2618. Metallographic analysis, EBSD analysis and line EDS microanalysis were made on the samples. Tensile test at room temperature and hardness were carried out to determine the mechanical properties. Fractographic analysis was performed after tensile test.
|
13 |
METALLIC MATERIALS STRENGTHENING VIA SELECTIVE LASER MELTING EMPLOYING NANOSECOND PULSED LASERSDanilo de Camargo Branco (14227169) 07 December 2022 (has links)
<p> The Selective Laser Melting (SLM) process is a manufacturing technique that facilitates the production of metallic parts with complex geometries and reduces both materials waste and lead time. The high tunability of the process parameters in SLM allows the design of the as-built part’s characteristics, such as controlled microstructure formation, residual stresses, presence of pores, and lack of fusion. The main parameter in the SLM process that influences these parts’ characteristics is the transient temperature field resulting from the laser-matter interaction. Nanosecond pulsed lasers in SLM have the advantage of enabling rapid and localized heating and cooling that make the formation of ultrafine grains possible. This work shows how different pulse durations can change the near-surface microstructure and overall mechanical properties of metallic parts. The nanosecond pulses can melt and resolidify aluminum parts’ near-surface region to form nanograined gradient structures with yield strengths as high as 250.8 MPa and indentation strengths as high as 725 MPa, which are comparable to some steel's mechanical properties. Knowing that the nanosecond pulsed lasers cause microstructure refinement for high-purity metals, the microstructure variations effects were also investigated for the cast iron alloy. Cast iron was used alone and mixed with born or boron nitride powders to induce the precipitation of strengthening phases only enabled under high cooling rates. Although producing parts with superior mechanical properties and controlling the precipitation of strengthening phases, the SLM process with nanosecond pulsed lasers is still accompanied by defects formation, mainly explained by the large thermal gradients, keyhole effect, reduced melt pool depth, and rapid cooling rates. Ideally, a smooth heating rate able to sinter powder grains, facilitating the heat flow through the heat-affected zone, followed by a sharper heating rate that generates a fully molten region, but minimizes ablation at the same time are targeted to reduce the porosity and lack of fusion. Then, a sharp cooling rate that can increase the nucleation rate, consequently refining the final microstructure is targeted in the production of strong materials in SLM with pulsed lasers. This work is the pioneer in controlling the transient temperature field during the heating and cooling stages in pulsed laser processing. The temperature field control capability by shaping a nanosecond laser pulse in the time domain affecting defects formation, residual strains, and microstructure was achieved, opening a wide research niche in the additive manufacturing field. </p>
|
14 |
Mechanical and Corrosion Properties of Selective Laser Melted AlloysSuryawanshi, Jyoti Balaji January 2017 (has links) (PDF)
Selective laser melting (SLM) of metallic powders is an additive manufacturing technique that is widely employed to produce 3D components, and is fast becoming an important method for manufacturing near-net shape and complex metallic parts. In this thesis, a comprehensive investigation on the effect of SLM on the mechanical and corrosion properties of the Al-12Si (AS), 316L stainless steel (SS), and 18(Ni)-300 grade managing steel (MS) is investigated, with particular emphasis on the developing (micro- as well as mesa-)structure -property correlations. Detailed microstructural characterization combined with quasi-static tensile, fracture toughness, fatigue crack growth, and unmatched fatigue tests were conducted. The effect of post-SLM heat treatment as well as the scanning strategy (linear vs. checker board hatch style) was examined and the results are compared with those of conventionally manufactured (CM) counterparts. The SLM alloys exhibit a mesostructured, in addition to the fine cellular structure along the boundaries. In a case of SLM-AS, the fine cellular structure imparts higher strength at the cost of ductility, while the mesostructured, which arises due to the laser track hatching, causes the crack path to be tortuous, and in turn leads to substantial increase in fracture toughness. This imparts significant anisotropy to the toughness while tensile properties are nearly-isotropic.
The experimental results of SLM-SS also show that higher tensile strengths properties with a marked reduction ductility. In spite of these, the fracture toughness, which ranges between 63 and 87 MPa.m0.5, of the SLM-SS is good, which is a result of the mesostructured induced crack tortuousity.Both tensile and toughness properties of SLM-SS were found to be anisotropic in nature. Upon aging SLM-MS, nanoscale precipitation of intermetallic compounds occurs within the cells that, in turn, lead in marked improvements in tensile strengths properties, but substantial reductions in ductility and fracture toughness. Overall, the mechanical performance, except ductility, of the SLM-MS after aging is found to be similar to that of CM-MS. Importantly, the lack of ductility does not lead to a reduction in toughness. Although the SLM-MS alloy possesses a mesostructured, no significant anisotropy in the mechanical behaviour is observed. The unnoticed studies on SLM-AS, -SS, and -MS reveal that the tensile residual stresses, gas-pores, and unmelted powder particles, can degrade the unmatched highest fatigue properties considerably and hence need be eliminated for high fatigue strength. Room temperature, electrochemical corrosion resistances (CRs) of SLM-AS, -SS and -MS in 0.1M NaCl solution were also evaluated and compared with those CM counterparts. While SLM improves CRs of AS and SS, it degrades that of MS. The results are discussed in terms of microstructural refinement and porosity that are common in SLM alloys.
|
15 |
Optimalizace SLM procesu pro výrobu úsťového zařízení útočné pušky / Optimization of SLM process for manufacturing of assault rifle muzzle deviceKubrický, Jakub January 2017 (has links)
The thesis deals with optimization of the manufacturing process of the muzzle device designed for assault rifle. The most common titanium alloy named Ti-6Al-4V was chosen for this task. The introduction summarizes previously existing types of muzzle devices and further describes the SLM technology with a special focus on titanium alloys processing. The optimization methods and their follow-up testing were designed according to theoretical knowledge that is summarized in the theoretical part of this work. Firstly, the aim was to describe the optimization of the manufacturing process with attention to preserving the relative density of the parts. Secondly, the mechanical properties of the parts that underwent different heat treatment were tested.The obtained data were then used to design and manufacture a muzzle device that underwent further testing in real condition afterwards.
|
16 |
Mechanické vlastnosti materiálů připravovaných pomocí procesu SLM / Mechanical properties of materials prepared by SLM processDoubrava, Marek January 2019 (has links)
The diploma thesis deals with the selection of process parameters used for manufacturing of high-strenth materials using SLM technology. The feedstock material was powder with a chemical composition according to standard DIN X3NiCoMoTi 18-9-5. Influence of change in process parameters on mechanical properties was examined by hardness tests and tensile tests. Metallographic and fractographic analysis were conducted with an aim to understand mechanisms of failure present in this type of material. Selection of optimal process parameters was based on the analysis of mechanical properties of manufactured samples. Possible future steps related to the improvement of the process were proposed. Results of this experiment were compared with literature regarding parts produced by SLM technology and conventional methods.
|
17 |
Mechanické vlastnosti materiálů připravovaných pomocí procesu SLM / Mechanical properties of materials prepared by SLM processVašáková, Kristýna January 2019 (has links)
This diploma thesis deals with properties of multi-materials interface composed of pure iron and Cu7Ni2Si1Cr alloy produced by SLM process. The theoretical part of thesis is focused on selective laser melting technology, and on description of defects connected with the production of SLM parts. Furthermore, one section deals with the production of multi-materials prepared by the SLM process. The experimental part of this thesis deals with selections of the SLM process parameters appropriate for bulk samples preparation. Mechanical properties were determined by the tensile tests at room temperature. Metallographic and fractographic analyses were performed for evaluation of the microstructure and description of the fracture mechanisms.
|
18 |
Vývoj procesních parametrů pro zpracování hliníkové slitiny AlSi7 technologií Selective Laser Melting / Development of process parameters for Selective Laser Melting technology for processing of aluminum alloy AlSi7Zvoníček, Josef January 2018 (has links)
The diploma thesis deals with the study of the influence of process parameters of AlSi7Mg0.6 aluminum alloy processing using the additive technology Selective Laser Melting. The main objective is to clarify the influence of the individual process parameters on the resulting porosity of the material and its mechanical properties. The thesis deals with the current state of aluminum alloy processing in this way. The actual material research of the work is carried out in successive experiments from the welding test to the volume test with subsequent verification of the mechanical properties of the material. Material evaluation in the whole work is material porosity, stability of individual welds, hardness of the material and its mechanical properties. The results are compared with the literature.
|
19 |
Mechanicko strukturní charakteristiky materiálů vyrobených metodou SLM / Mechanical and microstructural characteristics of materials produced by SLM methodHradil, David January 2016 (has links)
The master's diploma thesis deals with the mechanical and structural characteristics of aluminium-base alloy 2000 series, produced by selective laser melting (SLM). The experimental part of the thesis deal with selection of SLM processing parameters, influence of scanning strategy and evaluation of mechanical and structural characteristics of fabricated materials. Mechanical characteristics were evaluated based on results of tensile tests and microhardness measurement. Structural characteristics of materials produced by SLM were evaluated using metallographic analysis.
|
20 |
Výpočtový model dynamického zatěžování mikro-prutové struktury vyrobené technologií Selective Laser Melting / Numerical model of lattice structure under dynamic loading made by Selective Laser Melting technologyČervinek, Ondřej January 2018 (has links)
For the purpose of mechanical impact energy absorption in the transport industry are mainly used special profile absorbers. For highly specialized applications is required to use components that are designed for specific kind of deformation. Example of these parts are industrial-made metal foams or micro-lattice structures produced by SLM technology. This paper focuses on low-velocity dynamic loading prediction of BCC micro-lattice structure made of aluminum alloy AlSi10Mg by SLM technology (SLM 280HL). For this purpose dynamic FEM simulaton of the micro-lattice structure was developed, supplemented by model of BCC structure material obtained from mechanical testing. Real geometry of tested samples obtained from optical measurement (Atos Triple Scan III) was further implemented in the numerical model. Dynamic BCC structure load experiment was performed on a drop-weight tester. Behavior of structured material in drop-weight test was described by the course of deformation and reaction forces over time. Comparable results were obtained for flat loading of dynamic FEM simulation and experiment. Inclusion of production phenomena in simulation led to increased accuracy and compliance with experiment. Tool for testing the effect of geometry change on mechanical properties was created. To achieve more accurate results with puncture load, it is necessary to modify the material model with real material deformation at test sample failure.
|
Page generated in 0.064 seconds