• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and Characterization of BN-tryptophan and its Incorporation into Proteins & the Cation-π Binding Ability of BN-indole:

Boknevitz, Katherine Lynn Michelle January 2020 (has links)
Thesis advisor: Shih-Yuan Liu / Described herein are two projects on the application and effects of BN/CC isosterism on indole-containing compounds. In the first chapter, the synthetic route to an unnatural boron and nitrogen-containing analogue of tryptophan (BN-tryptophan) via late-stage functionalization of BN-indole is disclosed and its spectroscopic properties are reported with respect to the natural amino acid, tryptophan. The incorporation of BN-tryptophan into proteins expressed in E. coli using selective pressure incorporation, a residue specific method of unnatural amino acid incorporation, is then reported and its reactivity and fluorescence in the proteins characterized. In the second chapter, the synthesis of a BN-indole-containing aromatic scaffold is reported and the cation-π binding ability characterized by nuclear magnetic resonance (NMR) monitored titrations is disclosed. The resulting chemical shifts were analyzed using a non-linear curve fitting procedure and the extracted association constants (Ka’s) compared with the natural indole scaffold. Computations were also performed to support the titration results. / Thesis (PhD) — Boston College, 2020. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.

Page generated in 0.3421 seconds