• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

History, institutions, and selectivities in historical-materialist policy analysis: A sympathetic critique of Brand's State, context and Correspondence

Leubolt, Bernhard January 2014 (has links) (PDF)
This contribution shares Ulrich Brand's reliance on critical theories of the state and hegemony. Based on three points of criti-cism, the author argues for a better elaboration of the context of policy making. First, he proposes to consider a broader range of theoretical currents than the interpretive accounts introduced by Brand: (1) A strategic-relational interpretation of historical institutionalism will be introduced, (2) featuring the concept of "periodisation" for a systematic understanding of historically evolving structures. In addition to the introduction of a broader range of theoretical currents, (3) Brand's proposed concept of "selectivities" will be further refined and specified to be better able to grasp the workings of the "institutional condensation of the correlation of forces" in the policy cycle. The proposed conceptualisation of historical-materialist policy analysis will be exemplified by a short stylised example of research on equalityoriented policies in South Africa. (author's abstract)
2

Effects of calcination and activation conditions on ordered mesoporous carbon supported iron catalysts for production of lower olefins from synthesis gas

Oschatz, M., van Deelen, T. W., Weber, J. L., Lamme, W. S., Wang, G., Goderis, B., Verkinderen, O., Dugulan, A. I., de Jong, K. P. 24 July 2017 (has links) (PDF)
Lower C2–C4 olefins are important commodity chemicals usually produced by steam cracking of naphtha or fluid catalytic cracking of vacuum gas oil. The Fischer–Tropsch synthesis of lower olefins (FTO) with iron-based catalysts uses synthesis gas as an alternative feedstock. Nanostructured carbon materials are widely applied as supports for the iron nanoparticles due to their weak interaction with the metal species, facilitating the formation of catalytically active iron carbide. Numerous synthetic approaches towards carbon-supported FTO catalysts with various structures and properties have been published in recent years but structure-performance relationships remain poorly understood. We apply ordered mesoporous carbon (CMK-3) as a support material with well-defined pore structure to investigate the relationships between calcination/activation conditions and catalytic properties. After loading of iron and sodium/sulfur as the promoters, the structures and properties of the FTO catalysts are varied by using different calcination (300–1000 °C) and activation (350 or 450 °C) temperatures followed by FTO testing at 1 bar, 350 °C, H2/CO = 1. Carbothermal reduction of iron oxides by the support material occurs at calcination temperatures of 800 or 1000 °C, leading to a higher ratio of catalytically active iron(carbide) species but the catalytic activity remains low due to particle growth and blocking of the catalytically active sites with dense graphite layers. For the samples calcined at 300 and 500 °C, the formation of non-blocked iron carbide can be enhanced by activation at higher temperatures, leading to higher catalytic activity. Olefin selectivities of ∼60%C in the formed hydrocarbons with methane of ∼10%C are achieved for all catalysts under FTO conditions at low CO conversion. The influence of the calcination temperature is further investigated under industrially relevant FTO conditions. Promoted CMK-3-supported catalysts obtained at low calcination temperatures of 300–500 °C show stable operation for 140 h of time on stream at 10 bar, 340 °C, H2/CO = 2.
3

SILIPOLYSALEN : étude du greffage par polymérisation contrôlée de complexes de salen sur silicium pour une application en catalyse asymétrique hétérogène / SILIPOLYSALEN : grafting by controlled polymerization of salen complexes on silicon for heterogeneous asymmetric catalysis applications .

Zidelmal, Nacim 14 March 2018 (has links)
Les complexes métalliques chiraux de type salen sont connus pour la diversité de leur utilisation en catalyse conduisant à la préparation de nombreux synthons énantio-enrichis. Conformément au concept de chimie verte, l'un des principaux objectifs est d'établir une procédure efficace pour la récupération et la réutilisation de ces catalyseurs. Dans ce contexte, l'objectif de ce travail est de fonctionnaliser la surface du silicium par greffage covalent de ces catalyseurs par polymérisation contrôlée notamment la polymérisation radicalaire par transfert d’atome (ATRP) pour leur récupération et leur réutilisation. Ainsi, des copolymères de styrène contenant 5 à 50 mol% d’un comonomère salen dissymétrique ont été synthétisés par ATRP en solution. Le caractère contrôlé des polymérisations n’est obtenu que lorsque l’incorporation du comonomère salen est inférieure ou égale à 10 mol %.Après complexation au cobalt, les polymères correspondants se sont révélés capables de réaliser une activation coopérative efficace, conduisant au produit ciblé avec des rendements et des sélectivités élevés en tant que catalyseurs dans la réaction de dédoublement cinétique hydrolytique de l’épibromohydrine.Nous avons également réalisé la polymérisation du styrène sur la surface de silicium par ATRP après greffage de l’amorceur. Plusieurs méthodes de greffage de l’amorceur ont été utilisées soit d’une manière directe à partir de la surface hydrogénée, soit indirecte à partir d’une surface acide ou ester. Le styrène a été ensuite efficacement polymérisé en masse avec succès de façon contrôlée sur le silicium, avec des épaisseurs de couche comprise entre 9 et 29 nm déterminées par ellipsométrie et microscopie à force atomique / Chiral metal complexes of salen type are known for their efficient catalytic activity leading to the preparation of enantioselective enriched synthons. In accordance with the concept of green chemistry, one of the main challenge is to establish a procedure for the recovery and reuse of these catalysts. In this context, the objective of this work is to functionalize the silicon surface by grafting these catalysts by controlled polymerization especially by Atom Transfer Radical Polymerization (ATRP) to facilitate their recovery and reuse.Thus, styrene copolymers containing 5 to 50 mol % of an disymmetric salen comonomer were synthesized by ATRP in solution. The controlled nature of the polymerizations is obtained only when the incorporation of the salen comonomer is less than or equal to 10%.After complexation with cobalt, these complexes are shown to be capable of effective cooperative activation, leading to the targeted product with high yields and selectivities as catalysts in Hydrolytic Kinetic Resolution (HKR) of epibromohydrin.Constantio Constantini fratre imperatoris, matreque Galla.We also reported the polymerization of styrene on the silicon surface by ATRP after grafting of the initiator. Several methods of initiator grafting have been used either directly from the hydrogenated surface or indirectly from an acid or ester surface. Styrene has been successfully mass polymerized in a controlled manner on silicon with thicknesses of 9-29 nm of the layer obtained by ellipsometry and Atomic Force Microscopy.
4

Photocatalytic degradation of acetic acid in gas phase in the presence and in the absence of O2 using different TiO2 and M-TiO2 : a comparative study on the conversion, mineralization and intermediates’ selectivities / Dégradation photocatalytique de l'acide acétique en phase gazeuse en présence et absence d'O2 en utilisant différents TiO2 et M-TiO2 : étude comparative sur la conversion, la minéralisation et les sélectivités intermédiaires

Ngo, Ha Son 08 November 2017 (has links)
L'objectif de la thèse est de mieux comprendre les mécanismes de dégradation photocatalytique se produisant sous air ou sous azote en étudiant la disparition, la minéralisation et les produits intermédiaires d'une molécule simple l'acide acétique. Les réactions sont réalisées sous ces deux atmosphères afin de se placer dans des conditions de dépollution ou de génération d'énergie. L'étude est réalisée en phase gazeuse et sous flux en prenant comme molécule organique une molécule simple l'acide acétique. Dans un premier temps nous avons étudié la dégradation de l'acide acétique en utilisant le photocatalyseur de référence, TiO2 P25. Quel que soit le flux gazeux de réaction, air ou N2, nous avons montré que la réaction de décarboxylation est la première étape de la disparition de l'acide acétique. Cependant, le sort du groupe méthyle dépend du gaz porteur et du débit molaire (en d'autres termes de la concentration du polluant en phase gazeuse). Le mécanisme de dégradation se produisant à la surface du photocatalyseur est alors représenté pour expliquer l'importance de ce mécanisme comparé à celui faisant intervenir les radicaux hydroxyles. La schématisation du mécanisme inclut la régénération du photocatalyseur et la formation possible de H2O2, lequel a été observé dans la littérature. Il est également noté que la sélectivité d'éthane observé sous flux d'air augmente avec la concentration en polluant et correspond à la réaction de deux radicaux méthyl. Comme précédemment la formation de ce composé en surface du TiO2 est proposée. L'étude des produits de dégradation de l'acide acétique marqué par du carbone 13 sur le groupe carbonyle (CH313COOH) suggère que l'acétone et l'acétaldéhyde ne proviennent pas de la réduction du groupe carboxylique. Dans une seconde étape l'impact du flux photonique et de l'humidité en présence de TiO2 P25 et l'effet de différents TiO2 commerciaux sur la conversion et plus particulièrement la distribution des produits intermédiaires ont été étudiés. La comparaison de l'efficacité de différents TiO2 commerciaux a été discutée en considérant la présence de phase rutile, la nature des espèces actives, la surface spécifique de TiO2, le nombre de groupes OH à la surface des catalyseurs, la présence d'impuretés et la porosité des matériaux. Notre étude s'est ensuite focalisée sur la détermination de l'efficacité d'échantillons de TiO2 modifiés par ajout d'or afin d'améliorer la séparation des charges et ainsi la dégradation de polluant en présence d'air ou la formation de produit en présence de flux d'azote. Deux séries de Au/TiO2 avec les mêmes charges d'or (~ 0,16% en poids) ont été préparées par les deux méthodes: pyrolyse laser et pyrolyse par pulvérisation de flamme (Au-TiO2 LP et Au-TiO2 FSP). Les résultats ont montré que la présence d'or améliore l'activité photocatalytique dans l'air dans le cas des échantillons préparés par pyrolyse laser alors qu'aucun effet n'est observé avec les catalyseurs préparés par pyrolyse à flamme (FSP). Ce résultat s'explique en considérant la taille des nanoparticules d'or plus petite dans le cas des échantillons obtenus par pyrolyse laser. L'effet inverse est observé sous atmosphère de N2, la présence d'or diminue de plus de moitié la dégradation de l'acide acétique mais favorise la formation d'éthane. Ce résultat est discuté en considérant la présence d'or sous forme cationique. Malheureusement, par XPS, il n'a pas été possible d'observer d'or probablement dû à sa faible quantité. L'impact du dopage à l'azote de TiO2 LP et Au-TiO2 LP a également été étudié. Ce dopage diminue l'efficacité de cet échantillon. Finalement des études préliminaires ont été conduite d'une part sur l'efficacité de textile lumineux photocatalytique pour dégrader l'acide acétique afin d'améliorer les rendements quantiques et d'autre part sur les efficacités de catalyseurs Ag/TiO2 lesquels, outre diminué la pollution organique permettrait également l'inactivation des microorganismes / The objective of the thesis is to better understand the mechanisms of photocatalytic degradation occurring under air or under nitrogen by studying the disappearance, mineralization and intermediate products of a simple molecule acetic acid. The reactions are carried out under these two atmospheres in gas phase and dynamic mode in order to place themselves under conditions of depollution or of energy generation. Firstly, we studied the degradation of acetic acid using the reference photocatalyst, TiO2 P25. Regardless of the atmosphere, air or N2, we have shown that the decarboxylation reaction is the first step in the disappearance of acetic acid. However, the fate of the methyl group depends on the carrier gas and the molar flow rate (in other words, the concentration of the pollutant in the gas phase). The mechanism of degradation occurring on the surface of the photocatalyst is then represented to explain the importance of this mechanism compared to that involving the hydroxyl radicals. The schematization of the mechanism includes the regeneration of the photocatalyst and the possible formation of H2O2, which has been observed in the literature. The study of the degradation products of acetic acid labelled with carbon 13 on the carbonyl group (CH313COOH) suggests that acetone and acetaldehyde do not result from the reduction of the carboxylic group. In a second step, the impact of photonic flux and moisture in the presence of TiO2 P25 as well as the effect of different commercial TiO2 on the conversion and more particularly the distribution of the intermediate products have been studied. Comparison of the effectiveness of different commercial TiO2s was discussed by considering the presence of rutile phase, the nature of the active species, the specific surface area of TiO2, the number of OH groups on the surface of the catalysts, the presence of impurities and the porosity of the materials
5

Effects of calcination and activation conditions on ordered mesoporous carbon supported iron catalysts for production of lower olefins from synthesis gas

Oschatz, M., van Deelen, T. W., Weber, J. L., Lamme, W. S., Wang, G., Goderis, B., Verkinderen, O., Dugulan, A. I., de Jong, K. P. 24 July 2017 (has links)
Lower C2–C4 olefins are important commodity chemicals usually produced by steam cracking of naphtha or fluid catalytic cracking of vacuum gas oil. The Fischer–Tropsch synthesis of lower olefins (FTO) with iron-based catalysts uses synthesis gas as an alternative feedstock. Nanostructured carbon materials are widely applied as supports for the iron nanoparticles due to their weak interaction with the metal species, facilitating the formation of catalytically active iron carbide. Numerous synthetic approaches towards carbon-supported FTO catalysts with various structures and properties have been published in recent years but structure-performance relationships remain poorly understood. We apply ordered mesoporous carbon (CMK-3) as a support material with well-defined pore structure to investigate the relationships between calcination/activation conditions and catalytic properties. After loading of iron and sodium/sulfur as the promoters, the structures and properties of the FTO catalysts are varied by using different calcination (300–1000 °C) and activation (350 or 450 °C) temperatures followed by FTO testing at 1 bar, 350 °C, H2/CO = 1. Carbothermal reduction of iron oxides by the support material occurs at calcination temperatures of 800 or 1000 °C, leading to a higher ratio of catalytically active iron(carbide) species but the catalytic activity remains low due to particle growth and blocking of the catalytically active sites with dense graphite layers. For the samples calcined at 300 and 500 °C, the formation of non-blocked iron carbide can be enhanced by activation at higher temperatures, leading to higher catalytic activity. Olefin selectivities of ∼60%C in the formed hydrocarbons with methane of ∼10%C are achieved for all catalysts under FTO conditions at low CO conversion. The influence of the calcination temperature is further investigated under industrially relevant FTO conditions. Promoted CMK-3-supported catalysts obtained at low calcination temperatures of 300–500 °C show stable operation for 140 h of time on stream at 10 bar, 340 °C, H2/CO = 2.

Page generated in 0.0496 seconds