• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of water sorption and solubility behavior of nine different polymeric luting materials

Alsheikh, Rasha N. January 2009 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The cementation procedure is the key to long-term success of fixed restorations. The prognosis of prosthetic restoration is largely impacted by the maintenance of the luting cement and the adhesive bond. When exposed to water or saliva, most restorative materials undergo hydrolytic degradation. The purpose of this study is to evaluate the water solubility and water sorption characteristics of newly introduced acidic polymeric luting agents over a 180-day water-storage period. Nine different luting agents were tested. Fifty-two disc specimens of each material were fabricated using a mold with an internal dimension of 15[plus-minus]0.1 mm in diameter and 1.0 [plus-minus]0.1 mm deep. A constant weight, W0 [subscript zero], was reached after desiccating the specimens. Then, 13 specimens were assigned randomly to one of the four testing periods in the water for seven, 30, 90 and 180 days. After each period, the specimens were removed from the water and weighed to get W1 [subscript one]. A second period of desiccating the samples provided a constant weight W2 [subscript two]. The water sorption and solubility were determined by the following equations: WSP [subscript SP](%) = (W1 [subscript one] W2 [subscript two] ) X 100/ W0 [subscript zero] ,WSL [subscript SL](%) = (W0 [subscript zero] W2 [subscript two) X 100/ W0 [subscript zero]. The resin-modified glass-ionomers showed the highest water sorption/solubility results. The resin luting agents had the lowest sorption/solubility results. The self-adhesives showed a wide range of solubility/sorption; in general, they showed lower results compared with the resin-modified glass-ionomers. All the materials reached some sort of equilibrium after 90-days. Based on the results of our study, we conclude that self-adhesive luting materials were not all alike. Rely X Unicem was the most comparable to the resin luting materials. The resin luting materials had the lowest solubility and sorption. Resin-modified glass-ionomers showed the highest sorption/solubility results.
2

Flexural strength and shear bond strength of self-etching/self-adhesive resin luting agents

Adcook, Richard S. January 2009 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Traditional resin luting agents generally have mechanical properties that are superior to the newer so-called “universal” self-etching/self-adhesive resin luting agents. However, recent reports indicate that some properties of these new luting agents have been improved, approaching those of the traditional etch and rinse resin luting agents. The objective of this study was to test some mechanical properties of four of these self-etching/self-adhesive resin luting agents [Maxcem Elite (ME), Multilink Automix (MA), RelyX Unicem (RU), SmartCem 2 (SC)] and compare them to a traditional etch and rinse resin luting agent [RelyX ARC (RA)] and a resin-modified glass ionomer luting cement [Fuji Plus (FP)], both of which have much longer histories of clinical success. By comparing the properties of the newer cements to the standards, it may be possible to determine how clinically successful the newer cements may be. The mechanical properties tested were flexural strength (FS) and shear bond strength (SBS). The FS test included making beams of each material, storing them in water for periods of time (24 hours and 90 days) and then performing a three-point bending test on a universal testing machine. The 90 day groups were thermocycled. The SBS test involved preparing human molar specimens, making flat dentin surfaces. Composite cylinders were fabricated, luted to the dentin surfaces with each of the materials tested, stored in water for periods of time (24 hours or 90 days), and then a knife edge shear test was performed on a universal testing machine. The 90 day groups were thermocycled. A Weibull-distribution survival analysis was performed. The results revealed significant differences in the FS of all materials tested at 24 hours. After 90 days and thermocycling, only SC and RA were not significantly different. At both time periods, FP had the lowest and MA the highest FS. The SBS results showed MA, RA, and RU to have the highest bond strengths; SC and ME the lowest at 24 hours. After 90 days and thermocycling, RA had significantly higher bond strength than all other groups; ME, FP and SC had the lowest. The self-etching/self-adhesive resin luting agents all performed at least as well as FP, with the exception of SC (SBS 24 hour). They did not all perform as well as RA, with the exception of SC (FS 90 day), MA (SBS 24 hour, FS 24 hour and 90 day), and RU (SBS 24 hour). The newer luting agents should expect to have clinical success, regarding flexural strength and shear bond strength, at least as good as resin-modified glass ionomer luting cements and approach the level of traditional etch and rinse resin luting agents.

Page generated in 0.0792 seconds