Spelling suggestions: "subject:"selforganizing maps (SOM)"" "subject:"selforganizing gaps (SOM)""
1 |
Self-Organizing Maps For Classification And Prediction Of Nematode Populations In CottonDoshi, Rushabh Ashok 05 May 2007 (has links)
In this work, different Rotylenchulus reniformis nematode population numbers affecting cotton plants were spectrally classified using Self-Organized Maps. The hyperspectral reflectance of cotton plants affected by different nematode population numbers were analyzed in order to extract information from the signal that would lead to a fieldworthy methodology for predicting nematode population numbers extant in a plant's rhizosphere. Hyperspectral reflectances from both control and field nematode infestations were used in this work. Various feature extraction and dimensionality reduction methods (e.g., PCA, DWT, and SOM-based methods) were used to extract a reduced set of features. These extracted features were then classified using a supervised SOM classification method. Additionally, this work explores the possibility of combining the standard feature extraction methods with self-organized maps to extract a reduced set of features in order to increase classification accuracies.
|
2 |
On Road Mobile Source Air Pollutant Emissions; Identifying Hotspots and Ranking Roads in the State of OhioMeade, Wilbert E. 12 May 2011 (has links)
No description available.
|
3 |
Modelo híbrido SOM-ANN/BP para previsão de índices da NYSE através de redes neurais artificiaisBeluco, Adriano January 2013 (has links)
Este estudo propõe um modelo híbrido que reúne uma rede neural do tipo SOM (Self-Organizing Map) com uma rede neural do tipo Multicamadas com Retropropagação (BPN: Backpropagation Network). A utilização da rede SOM tem o intuito de segmentar a base de dados em diversos clusters, onde são ressaltadas suas diferenças. A rede BPN é usada para construir um modelo matemático de previsão que descreve a relação entre os indicadores e o valor de fechamento de cada cluster formado na rede SOM. A viabilidade e o percentual de efetividade do modelo proposto são demonstrados através de experimentos de predição de índices utilizados pelo NYSE (New York Stock Exchange). O modelo foi elaborado a partir de uma base de dados composta pelo índice NYSE Composite U.S. 100 no período entre 02 de abril de 2004 a 08 de novembro de 2012. Como variáveis de entrada para as redes neurais, foram utilizados 10 índices: MA_10, BIAS_20, WMS%R_9, K_9, D_9, MTM_10, ROC_10, CCI_24, AR_26, BR_26. Os resultados obtidos com o modelo híbrido proposto se mostraram superiores aos obtidos com modelos convencionais estatísticos. / This study proposes a hybrid model that combines a neural network SOM (Self-Organizing Map) with a neural network with Multilayer Backpropagation (BPN: Backpropagation Network). The SOM aims to segment the database into different clusters, where they highlight their differences. The BPN network is used to build a predictive mathematical model that describes the relationship between the indicators and the closing value of each cluster formed in the SOM. The percentage of viability and effectiveness of the proposed model are demonstrated through experiments predict index used by the NYSE (New York Stock Exchange). The model was developed from a database composed of 100 U.S. NYSE Composite Index in the period from April, 02, 2004 to November, 08, 2012. As input variables for neural networks, we used 10 indices: MA_10, BIAS_20, WMS%R_9, K_9, D_9, MTM_10, ROC_10, CCI_24, AR_26, BR_26. Results obtained with the proposed hybrid model were higher than those obtained with conventional statisticals techniques.
|
4 |
Modelo híbrido SOM-ANN/BP para previsão de índices da NYSE através de redes neurais artificiaisBeluco, Adriano January 2013 (has links)
Este estudo propõe um modelo híbrido que reúne uma rede neural do tipo SOM (Self-Organizing Map) com uma rede neural do tipo Multicamadas com Retropropagação (BPN: Backpropagation Network). A utilização da rede SOM tem o intuito de segmentar a base de dados em diversos clusters, onde são ressaltadas suas diferenças. A rede BPN é usada para construir um modelo matemático de previsão que descreve a relação entre os indicadores e o valor de fechamento de cada cluster formado na rede SOM. A viabilidade e o percentual de efetividade do modelo proposto são demonstrados através de experimentos de predição de índices utilizados pelo NYSE (New York Stock Exchange). O modelo foi elaborado a partir de uma base de dados composta pelo índice NYSE Composite U.S. 100 no período entre 02 de abril de 2004 a 08 de novembro de 2012. Como variáveis de entrada para as redes neurais, foram utilizados 10 índices: MA_10, BIAS_20, WMS%R_9, K_9, D_9, MTM_10, ROC_10, CCI_24, AR_26, BR_26. Os resultados obtidos com o modelo híbrido proposto se mostraram superiores aos obtidos com modelos convencionais estatísticos. / This study proposes a hybrid model that combines a neural network SOM (Self-Organizing Map) with a neural network with Multilayer Backpropagation (BPN: Backpropagation Network). The SOM aims to segment the database into different clusters, where they highlight their differences. The BPN network is used to build a predictive mathematical model that describes the relationship between the indicators and the closing value of each cluster formed in the SOM. The percentage of viability and effectiveness of the proposed model are demonstrated through experiments predict index used by the NYSE (New York Stock Exchange). The model was developed from a database composed of 100 U.S. NYSE Composite Index in the period from April, 02, 2004 to November, 08, 2012. As input variables for neural networks, we used 10 indices: MA_10, BIAS_20, WMS%R_9, K_9, D_9, MTM_10, ROC_10, CCI_24, AR_26, BR_26. Results obtained with the proposed hybrid model were higher than those obtained with conventional statisticals techniques.
|
5 |
Modelo híbrido SOM-ANN/BP para previsão de índices da NYSE através de redes neurais artificiaisBeluco, Adriano January 2013 (has links)
Este estudo propõe um modelo híbrido que reúne uma rede neural do tipo SOM (Self-Organizing Map) com uma rede neural do tipo Multicamadas com Retropropagação (BPN: Backpropagation Network). A utilização da rede SOM tem o intuito de segmentar a base de dados em diversos clusters, onde são ressaltadas suas diferenças. A rede BPN é usada para construir um modelo matemático de previsão que descreve a relação entre os indicadores e o valor de fechamento de cada cluster formado na rede SOM. A viabilidade e o percentual de efetividade do modelo proposto são demonstrados através de experimentos de predição de índices utilizados pelo NYSE (New York Stock Exchange). O modelo foi elaborado a partir de uma base de dados composta pelo índice NYSE Composite U.S. 100 no período entre 02 de abril de 2004 a 08 de novembro de 2012. Como variáveis de entrada para as redes neurais, foram utilizados 10 índices: MA_10, BIAS_20, WMS%R_9, K_9, D_9, MTM_10, ROC_10, CCI_24, AR_26, BR_26. Os resultados obtidos com o modelo híbrido proposto se mostraram superiores aos obtidos com modelos convencionais estatísticos. / This study proposes a hybrid model that combines a neural network SOM (Self-Organizing Map) with a neural network with Multilayer Backpropagation (BPN: Backpropagation Network). The SOM aims to segment the database into different clusters, where they highlight their differences. The BPN network is used to build a predictive mathematical model that describes the relationship between the indicators and the closing value of each cluster formed in the SOM. The percentage of viability and effectiveness of the proposed model are demonstrated through experiments predict index used by the NYSE (New York Stock Exchange). The model was developed from a database composed of 100 U.S. NYSE Composite Index in the period from April, 02, 2004 to November, 08, 2012. As input variables for neural networks, we used 10 indices: MA_10, BIAS_20, WMS%R_9, K_9, D_9, MTM_10, ROC_10, CCI_24, AR_26, BR_26. Results obtained with the proposed hybrid model were higher than those obtained with conventional statisticals techniques.
|
6 |
Análise de agrupamentos baseada na topologia dos dados e em mapas auto-organizáveis. / Data clustering based on data topology and self organizing-maps.Boscarioli, Clodis 16 May 2008 (has links)
Cada vez mais, na conjuntura das grandes tomadas de decisões, a análise de dados massivamente armazenados se torna uma necessidade das mais variadas áreas de conhecimento. A análise de dados envolve a realização de diferentes tarefas, que podem ser realizadas por diferentes técnicas e estratégias como análise de agrupamento de dados. Esta pesquisa enfatiza a realização da tarefa de análise de agrupamento de dados (Data Clustering) usando SOM (Self-Organizing Maps) como principal artefato. SOM é uma rede neural artificial baseada em aprendizado competitivo e não-supervisionado, o que significa que o treinamento é inteiramente guiado pelos dados e que os neurônios do mapa competem entre si. Essa rede neural possui a habilidade de formar mapeamentos que quantizam os dados, preservando a sua topologia. Este trabalho introduz uma nova metodologia de análise de agrupamentos a partir de SOM, que considera o mapa topológico gerado por ele e a topologia dos dados no processo de agrupamento. Uma análise experimental e comparativa é apresentada, evidenciando a potencialidade da proposta, destacando, por fim, as principais contribuições do trabalho. / More than ever, in environment of large decision making, the analysis of data stored massively becomes a real need in almost all knowledge areas. The data analyzing process covers the performing of different tasks that can be executed for different techniques and strategies as the data clustering analysis. This research is focused on the analysis task of data groups, called Data Clustering using Self Organizing Maps (SOM) as principal artifact. SOM is an artificial neural network based on competitive and unsupervised learning, what means that its training is entirely driven by the data, such the neurons of the map compete themselves for doing it. This neural network has the ability to build the mapping task that quantifies the source data, but preserving the topology. This work introduces a new clustering analysis methodology based on SOM, considering the topological map produced by it and also the topology of the data obtained in the clustering process. The experimental and comparative analysis are also presented to demonstrate the potential of the proposal, highlighting at the end the mainly contributions of the work.
|
7 |
Análise de agrupamentos baseada na topologia dos dados e em mapas auto-organizáveis. / Data clustering based on data topology and self organizing-maps.Clodis Boscarioli 16 May 2008 (has links)
Cada vez mais, na conjuntura das grandes tomadas de decisões, a análise de dados massivamente armazenados se torna uma necessidade das mais variadas áreas de conhecimento. A análise de dados envolve a realização de diferentes tarefas, que podem ser realizadas por diferentes técnicas e estratégias como análise de agrupamento de dados. Esta pesquisa enfatiza a realização da tarefa de análise de agrupamento de dados (Data Clustering) usando SOM (Self-Organizing Maps) como principal artefato. SOM é uma rede neural artificial baseada em aprendizado competitivo e não-supervisionado, o que significa que o treinamento é inteiramente guiado pelos dados e que os neurônios do mapa competem entre si. Essa rede neural possui a habilidade de formar mapeamentos que quantizam os dados, preservando a sua topologia. Este trabalho introduz uma nova metodologia de análise de agrupamentos a partir de SOM, que considera o mapa topológico gerado por ele e a topologia dos dados no processo de agrupamento. Uma análise experimental e comparativa é apresentada, evidenciando a potencialidade da proposta, destacando, por fim, as principais contribuições do trabalho. / More than ever, in environment of large decision making, the analysis of data stored massively becomes a real need in almost all knowledge areas. The data analyzing process covers the performing of different tasks that can be executed for different techniques and strategies as the data clustering analysis. This research is focused on the analysis task of data groups, called Data Clustering using Self Organizing Maps (SOM) as principal artifact. SOM is an artificial neural network based on competitive and unsupervised learning, what means that its training is entirely driven by the data, such the neurons of the map compete themselves for doing it. This neural network has the ability to build the mapping task that quantifies the source data, but preserving the topology. This work introduces a new clustering analysis methodology based on SOM, considering the topological map produced by it and also the topology of the data obtained in the clustering process. The experimental and comparative analysis are also presented to demonstrate the potential of the proposal, highlighting at the end the mainly contributions of the work.
|
8 |
Análise de Sinais Eletrocardiográficos Atriais Utilizando Componentes Principais e Mapas Auto-Organizáveis. / Atrial Eletrocardiographics Signals Analysis Using Principal Components and Self-Organizing Maps.Coutinho, Paulo Silva 21 November 2008 (has links)
A análise de sinais provenientes de um eletrocardiograma (ECG) pode ser de grande importância para avaliação do comportamento cardíaco de um paciente. Os sinais de ECG possuem características específicas de acordo com os tipos de arritmias e sua classificação depende da morfologia do sinal. Neste trabalho é considerada uma abordagem híbrida utilizando análise de componentes principais (PCA) e mapas auto-organizáveis (SOM) para classificação de agrupamentos provenientes de arritmias como a taquicardia sinusal e, principalmente, fibrilação atrial. Nesse sentido, O PCA é utilizado como um pré-processador buscando suprimir sinais de atividades ventriculares, de maneira que a atividade atrial presente no ECG seja evidenciada sob a forma das ondas f. A Rede Neural SOM, é usada na classificação dos padrões de fibrilação atrial e seus agrupamentos / A análise de sinais provenientes de um eletrocardiograma (ECG) pode ser de grande importância para avaliação do comportamento cardíaco de um paciente. Os sinais de ECG possuem características específicas de acordo com os tipos de arritmias e sua classificação depende da morfologia do sinal. Neste trabalho é considerada uma abordagem híbrida utilizando análise de componentes principais (PCA) e mapas auto-organizáveis (SOM) para classificação de agrupamentos provenientes de arritmias como a taquicardia sinusal e, principalmente, fibrilação atrial. Nesse sentido, O PCA é utilizado como um pré-processador buscando suprimir sinais de atividades ventriculares, de maneira que a atividade atrial presente no ECG seja evidenciada sob a forma das ondas f. A Rede Neural SOM, é usada na classificação dos padrões de fibrilação atrial e seus agrupamentos
|
9 |
Projection of High-Dimensional Genome-Wide Expression on SOM Transcriptome LandscapesNikoghosyan, Maria, Loeffler-Wirth, Henry, Davidavyan, Suren, Binder, Hans, Arakelyan, Arsen 23 January 2024 (has links)
The self-organizing maps portraying has been proven to be a powerful approach for
analysis of transcriptomic, genomic, epigenetic, single-cell, and pathway-level data as well as for
“multi-omic” integrative analyses. However, the SOM method has a major disadvantage: it requires
the retraining of the entire dataset once a new sample is added, which can be resource- and timedemanding.
It also shifts the gene landscape, thus complicating the interpretation and comparison
of results. To overcome this issue, we have developed two approaches of transfer learning that
allow for extending SOM space with new samples, meanwhile preserving its intrinsic structure. The
extension SOM (exSOM) approach is based on adding secondary data to the existing SOM space by
“meta-gene adaptation”, while supervised SOM portrayal (supSOM) adds support vector machine
regression model on top of the original SOM algorithm to “predict” the portrait of a new sample.
Both methods have been shown to accurately combine existing and new data. With simulated data,
exSOM outperforms supSOM for accuracy, while supSOM significantly reduces the computing time
and outperforms exSOM for this parameter. Analysis of real datasets demonstrated the validity of
the projection methods with independent datasets mapped on existing SOM space. Moreover, both
methods well handle the projection of samples with new characteristics that were not present in
training datasets.
|
10 |
Réalisation d'un réseau de neurones "SOM" sur une architecture matérielle adaptable et extensible à base de réseaux sur puce "NoC" / Neural Network Implementation on an Adaptable and Scalable Hardware Architecture based-on Network-on-ChipAbadi, Mehdi 07 July 2018 (has links)
Depuis son introduction en 1982, la carte auto-organisatrice de Kohonen (Self-Organizing Map : SOM) a prouvé ses capacités de classification et visualisation des données multidimensionnelles dans différents domaines d’application. Les implémentations matérielles de la carte SOM, en exploitant le taux de parallélisme élevé de l’algorithme de Kohonen, permettent d’augmenter les performances de ce modèle neuronal souvent au détriment de la flexibilité. D’autre part, la flexibilité est offerte par les implémentations logicielles qui quant à elles ne sont pas adaptées pour les applications temps réel à cause de leurs performances temporelles limitées. Dans cette thèse nous avons proposé une architecture matérielle distribuée, adaptable, flexible et extensible de la carte SOM à base de NoC dédiée pour une implantation matérielle sur FPGA. A base de cette approche, nous avons également proposé une architecture matérielle innovante d’une carte SOM à structure croissante au cours de la phase d’apprentissage / Since its introduction in 1982, Kohonen’s Self-Organizing Map (SOM) showed its ability to classify and visualize multidimensional data in various application fields. Hardware implementations of SOM, by exploiting the inherent parallelism of the Kohonen algorithm, allow to increase the overall performances of this neuronal network, often at the expense of the flexibility. On the other hand, the flexibility is offered by software implementations which on their side are not suited for real-time applications due to the limited time performances. In this thesis we proposed a distributed, adaptable, flexible and scalable hardware architecture of SOM based on Network-on-Chip (NoC) designed for FPGA implementation. Moreover, based on this approach we also proposed a novel hardware architecture of a growing SOM able to evolve its own structure during the learning phase
|
Page generated in 0.083 seconds