• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Resource Clogging Attacks in Mobile Crowd-Sensing: AI-based Modeling, Detection and Mitigation

Zhang, Yueqian 17 January 2020 (has links)
Mobile Crowdsensing (MCS) has emerged as a ubiquitous solution for data collection from embedded sensors of the smart devices to improve the sensing capacity and reduce the sensing costs in large regions. Due to the ubiquitous nature of MCS, smart devices require cyber protection against adversaries that are becoming smarter with the objective of clogging the resources and spreading misinformation in such a non-dedicated sensing environment. In an MCS setting, one of the various adversary types has the primary goal of keeping participant devices occupied by submitting fake/illegitimate sensing tasks so as to clog the participant resources such as the battery, sensing, storage, and computing. With this in mind, this thesis proposes a systematical study of fake task injection in MCS, including modeling, detection, and mitigation of such resource clogging attacks. We introduce modeling of fake task attacks in MCS intending to clog the server and drain battery energy from mobile devices. We creatively grant mobility to the tasks for more extensive coverage of potential participants and propose two take movement patterns, namely Zone-free Movement (ZFM) model and Zone-limited Movement (ZLM) model. Based on the attack model and task movement patterns, we design task features and create structured simulation settings that can be modified to adapt different research scenarios and research purposes. Since the development of a secure sensing campaign highly depends on the existence of a realistic adversarial model. With this in mind, we apply the self-organizing feature map (SOFM) to maximize the number of impacted participants and recruits according to the user movement pattern of these cities. Our simulation results verify the magnified effect of SOFM-based fake task injection comparing with randomly selected attack regions in terms of more affected recruits and participants, and increased energy consumption in the recruited devices due to the illegitimate task submission. For the sake of a secure MCS platform, we introduce Machine Learning (ML) methods into the MCS server to detect and eliminate the fake tasks, making sure the tasks arrived at the user side are legitimate tasks. In our work, two machine learning algorithms, Random Forest and Gradient Boosting are adopted to train the system to predict the legitimacy of a task, and Gradient Boosting is proven to be a more promising algorithm. We have validated the feasibility of ML in differentiating the legitimacy of tasks in terms of precision, recall, and F1 score. By comparing the energy-consuming, effected recruits, and impacted candidates with and without ML, we convince the efficiency of applying ML to mitigate the effect of fake task injection.
2

Voltage-Current Based Features for Power Quality Detection by Using Artificial Intelligence

Wang, Long-wei 10 July 2006 (has links)
Power quality is a main subject to considerable attentions from utilities and customers owing to the popular uses of many non-linear electronic equipment in recent years. Harmonics, voltage swell, voltage sag, and, power interruption could downgrade the service quality. To ensure the power quality, detecting harmonic and voltage disturbances becomes an important issue. In other words, a detection method with classification capability will be helpful for detecting disturbances. The thesis proposed two models of power quality detection for power system disturbances using voltage-current(V-I) characteristics in the time domain with hybrid wavelets grey relational analysis (WGRA), and self-organizing feature map network (WSOM). Morlet wavelets are responsible for extracting features from voltages and currents. GRA and SOM were employed to identify the types of various disturbance patterns. Computer simulations have demonstrated the computational efficiency and accurate recognition capability for power quality detection and discrimination with an IEEE 14-Bus power system.
3

Nichtlineare Methoden in der trainingswissenschaftlichen Diagnostik : mit Untersuchungen aus dem Schwimmsport / Nonlinear methods for diagnostic purposes in training science

Bügner, Jörg January 2005 (has links)
<p>Die trainingswissenschaftliche Diagnostik in den Kernbereichen Training, Wettkampf und Leistungsfähigkeit ist durch einen hohen Praxisbezug, eine ausgeprägte strukturelle Komplexität und vielseitige Wechselwirkungen der sportwissenschaftlichen Teilgebiete geprägt. Diese Eigenschaften haben in der Vergangenheit dazu geführt, dass zentrale Fragestellungen, wie beispielsweise die Maximierung der sportlichen Leistungsfähigkeit, eine ökonomische Trainingsgestaltung, eine effektive Talentauswahl und -sichtung oder die Modellbildung noch nicht vollständig gelöst werden konnten. Neben den bereits vorhandenen linearen Lösungsansätzen werden in dieser Arbeit Methoden aus dem Bereich der Neuronalen Netzwerke eingesetzt. Diese nichtlinearen Diagnoseverfahren sind besonders geeignet für die Analyse von Prozessabläufen, wie sie beispielsweise im Training vorliegen.</p> <p>Im theoretischen Teil werden zunächst Gemeinsamkeiten, Abhängigkeiten und Unterschiede in den Bereichen Training, Wettkampf und Leistungsfähigkeit untersucht sowie die Brücke zwischen trainingswissenschaftlicher Diagnostik und nichtlinearen Verfahren über die Begriffe der Interdisziplinarität und Integrativität geschlagen. Angelehnt an die Theorie der Neuronalen Netze werden anschließend die Grundlagenmodelle Perzeptron, Multilayer-Perzeptron und Selbstorganisierende Karten theoretisch erläutert. Im empirischen Teil stehen dann die nichtlineare Analyse von personalen Anforderungsstrukturen, Zustände der sportlichen Form und die Prognose sportlichen Talents - allesamt bei jugendlichen Leistungsschwimmerinnen und -schwimmern - im Mittelpunkt. Die nichtlinearen Methoden werden dabei einerseits auf ihre wissenschaftliche Aussagekraft überprüft, andererseits untereinander sowie mit linearen Verfahren verglichen.</p> / <p>The diagnostic methods in training science concentrate on the core areas of training, competition, and performance. The methods commonly used are characterized by a high degree of practical applicability and distinct structural complexity. These characteristics have led to the question which scientific methods fit best for resolving problems like, for example, the optimization of athletic performance, efficient planning and monitoring of training processes, effective talent screening, selection and development, or the formation of analytical models. All these questions have not yet been answered sufficiently.</p> <p>Aside from the traditional mathematical approaches on the basis of the linear model, nonlinear methods in the field of neural networks are used in this dissertation. These nonlinear diagnostic methods are especially suitable for the analysis of coherent patterns in time series such as training processes.</p> <p>In the theoretical part of the dissertation, common aspects, mutual dependencies, and differences between training, competition, and performance are examined. In this context, a bridge is built between the diagnostic purposes in these fields and suitable nonlinear methods. Along the lines of the neural networks theory, the basic models Perceptron, Multilayer-Perceptron, and Self-Organizing Feature Maps are subsequently elucidated.</p> <p>In the empirical part of the thesis, three studies conducted with top level adolescent swimmers are presented that focus on the nonlinear analysis of personal athletic ability structures, different states of athletic shape, and the prognosis of athletic talent. The nonlinear methods are thus examined as to how worthwhile they are for analytical purposes in training science on the one hand, and they are compared to each other as well as to linear methods on the other hand.</p>
4

Application of artificial neural networks in early detection of Mastitis from improved data collected on-line by robotic milking stations

Sun, Zhibin January 2008 (has links)
Two types of artificial neural networks, Multilayer Perceptron (MLP) and Self-organizing Feature Map (SOM), were employed to detect mastitis for robotic milking stations using the preprocessed data relating to the electrical conductivity and milk yield. The SOM was developed to classify the health status into three categories: healthy, moderately ill and severely ill. The clustering results were successfully evaluated and validated by using statistical techniques such as K-means clustering, ANOVA and Least Significant Difference. The result shows that the SOM could be used in the robotic milking stations as a detection model for mastitis. For developing MLP models, a new mastitis definition based on higher EC and lower quarter yield was created and Principle Components Analysis technique was adopted for addressing the problem of multi-colinearity existed in the data. Four MLPs with four combined datasets were developed and the results manifested that the PCA-based MLP model is superior to other non-PCA-based models in many respects such as less complexity, higher predictive accuracy. The overall correct classification rate (CCR), sensitivity and specificity of the model was 90.74 %, 86.90 and 91.36, respectively. We conclude that the PCA-based model developed here can improve the accuracy of prediction of mastitis by robotic milking stations.
5

應用類神經網路方法於金融時間序列預測之研究--以TWSE台股指數為例 / Using Neural Network approaches to predict financial time series research--The example of TWSE index prediction

張永承, Jhang, Yong-Cheng Unknown Date (has links)
本研究考慮重要且對台股大盤指數走勢有連動影響的因素,主要納入對台股有領頭作用的美國三大股市,那斯達克(NASDAQ)指數、道瓊工業(Dow Jones)指數、標準普爾500(S&P500)指數;其他對台股緊密連動效果的國際股票市場,香港恆生指數、上海證券綜合指數、深圳證券綜合指數、日經225指數;以及納入左右國際經濟表現的國際原油價格走勢,美國西德州原油、中東杜拜原油和歐洲北海布蘭特原油;在宏觀經濟因素方面則考量失業率、消費者物價指數、匯率、無風險利率、美國製造業重要指標的存貨/銷貨比率、影響貨幣數量甚鉅的M1B;在技術分析方面則納入多種重要的指標,心理線 (PSY) 指標、相對強弱(RSI) 指標、威廉(WMS%R) 指標、未成熟隨機(RSV) 指標、K-D隨機指標、移動平均線(MA)、乖離率(BIAS)、包寧傑%b和包寧傑帶狀寬度(BandWidth%);所有考量因素共計35項,因為納入重要因子比較多,所以完備性較高。 本研究先採用的贏者全拿(Winner-Take-All) 競爭學習策略的自組織映射網路(Self-Organizing Feature Maps, SOM),藉由將相似資料歸屬到已身的神經元萃取出關聯分類且以計算距離來衡量神經元的離散特徵,對於探索大量且高維度的非線性複雜特徵俱有優良的因素相依性投射效果,將有利於提高預測模式精準度。在線性擬合部分則結合倒傳遞(Back-Propagation, BP)、Elman反饋式和徑向基底函數類網路(Radial-Basis-Function Network, RBF)模式為指數預測輸出,並對台股加權指數隔日收盤指數進行預測和評量。而在傳統的Elman反饋式網路只在隱藏層存在反饋機制,本研究則在輸入層和隱藏層皆建立反饋機制,將儲存在輸入層和隱藏層的過去時間資訊回饋給網路未來參考。在徑向基底函數網路方面,一般選取中心聚類點採用隨機選取方式,若能有效降低中心點個數,可降低網路複雜度,本研究導入垂直最小平方法以求取誤差最小的方式強化非監督式學習選取中心點的能力,以達到網路快速收斂,提昇網路學習品質。 研究資料為台股指數交易收盤價,日期自2001/1/2,至2011/10/31共2676筆資料。訓練資料自2001/1/2至2009/12/31,共2223筆;實證測試資料自2010/1/4至2011/10/31,計453個日數。主要評估指標採用平均相對誤差(AMRE)和平均絕對誤差 (AAE)。在考慮因子較多的狀況下,實證結果顯示,在先透過SOM進行因子聚類分析之後,預測因子被分成四個組別,分別再透過BP、Elman recurrent和RBF方法進行線性擬合,平均表現方面,以RBF模式下的四個群組因子表現最佳,其中RBF模式之下的群組4,其AMRE可達到0.63%,最差的AMRE則是群組1,約為1.05%;而Elman recurrent模式下的四組群組因子之ARME則介於1.01%和1.47%之間;其中預測效果表現最差則是BP模式的預測結果。顯示RBF具有絕佳的股價預測能力。最後,在未來研究建議可以運用本文獻所探討之其他數種類神經網路模式進行股價預測。 / In this study, we considering the impact factors for TWSE index tendency, mainly aimed at the three major American stock markets, NASDAQ index, Dow Jones index, S&P 500, which leading the Taiwan stock market trend; the other international stock markets, such as the Hong Kong Hang-Seng Index, Shanghai Stock Exchange Composite Index, Shenzhen Stock Exchange Composite Index, NIKKEI 225 index, which have close relationship with Taiwan stock market; we also adopt the international oil price trend, such as the West Texas Intermediate Crude Oil in American, the Dubai crude oil in Middle Eastern, North Sea Brent crude oil in European, which affects international economic performance widely; On the side of macroeconomic factors, we considering the Unemployed rate, Consumer Price Index, exchange rate, riskless rate, the Inventory to Sales ratio which it is important index of American manufacturing industry, and the M1b factor which did greatly affect to currency amounts; In the part of Technical Analysis index, we adopt several important indices, such as the Psychology Line Index (PSY), Relative Strength Index (RSI), the Wechsler Memory Scale—Revised Index (WMS%R), Row Stochastic Value Index (RSV), K-D Stochastics Index, Moving Average Line (MA), BIAS, Bollinger %b (%b), Bollinger Band Width (Band Width%);All factors total of 35 which we have considered the important factor is numerous, so the integrity is high. In this study, at first we adopt the Self-Organizing Feature Maps Network which based on the Winner-Take-All competition learning strategy, Similar information by the attribution to the body of the neuron has been extracted related categories and to calculate the distance to measure the discrete characteristics of neurons, it has excellent projection effect by exploring large and complex high-dimensional non-linear characteristics for all the dependency factors , would help to improve the accuracy of prediction models, would be able to help to improve the accuracy of prediction models. The part of the curve fitting combine with the back-propagation (Back-Propagation, BP), Elman recurrent model and radial basis function network (Radial-Basis-Function Network, RBF) model for the index prediction outputs, forecast and assessment the next close price of Taiwan stocks weighted index. In the traditional Elman recurrent network exists only one feedback mechanism in the hidden layer, in this study in the input and hidden layer feedback mechanisms are established, the previous information will be stored in the input and hidden layer and will be back to the network for future reference. In the radial basis function network, the general method is to selecting cluster center points by random selection, if we have the effectively way to reduce the number of the center points, which can reduces network complexity, in this study introduce the Orthogonal Least Squares method in order to obtain the smallest way to strengthen unsupervised learning center points selecting ability, in order to achieve convergence of the network fast, and improve network learning quality. Research data for the Trading close price of Taiwan Stock Index, the date since January 2, 2001 until September 30, 2011, total data number of 2656. since January 2, 2001 to December 31, 2009 a total number of 2223 trading close price as training data; empirical testing data, from January 4, 2010 to September 30, 2011, a total number of 433. The primary evaluation criteria adopt the Average Mean Relative Error (AMRE) and the Average Absolute Error (AAE). In the condition for consider more factors, the empirical results show that, by first through SOM for factor clustering analysis, the prediction factors were divided into four categories and then through BP, Elman recurrent and RBF methods for curve fitting, at the average performance , the four group factors of the RBF models get the best performance, the group 4 of the RBF model, the AMRE can reach 0.63%, the worst AMRE is group 1, about 1.05%; and the four groups of Elman recurrent model of ARME is between 1.01% and 1.47%; the worst prediction model is BP method. RBF has shown excellent predictive ability for stocks index. Finally, the proposal can be used in future studies of the literatures that we have explore several other methods of neural network model for stock trend forecasting.

Page generated in 0.1057 seconds