Spelling suggestions: "subject:"selfoscillating"" "subject:"self_oscillating""
1 |
Investigation and Construction of Self-oscillating SystemsWang, Guanqun 2010 May 1900 (has links)
Self-oscillating reactions have been widely observed and studied since the last century because they exhibit unique behaviors different from the traditional chemical reactions. Self-oscillating systems, such as the Belousov-Zhabotinsky (BZ) reaction, oxidation reaction of CO on single crystal Pt, and calcium waves in the heart tissue, are of great interest in a variety of scientific areas. This thesis contributes to the understanding of wave transition in BZ reaction, and to possible applications of non-equilibrium behaviors of polymer systems. In BZ reaction, two types of wave patterns, target and spiral, are frequently observed. The transition from one to another is not fully understood. Hence, a systematic investigation has been performed here to investigate the mechanism by which heterogeneity affects the formation of wave patterns. A BZ reaction catalyst was immobilized in ion exchange polystyrene beads to form active beads. Then active and inactive beads with no catalyst loading were mixed together with various ratios to achieve various levels of heterogeneity. In the same reaction environment, different wave patterns were displayed for the bead mixtures. We observed a transition from target patterns to spiral patterns as the percentage of the active beads in the beads mixture decreased. The increase of the heterogeneity led to wave pattern transition. Heterogeneity hindered the propagation of target waves and broke them into wavelets that generated spiral waves. In an effort to develop practical applications based on non-equilibrium phenomena, we have established a novel drug delivery system. A proton generator Zirconium Phosphate (ZrP) was imbedded inside a pH sensitive polymer matrix, poly acrylic acid (PAA). Through the ion exchange with sodium cation (Na+), ZrP generates protons to control the swelling/shrinking behaviors of PAA. The drug encapsulated in the matrix can be released in a controlled manner by adjusting the supply of Na+. This system might be developed into vehicles to deliver drugs to specific targets and release at a proper time. This new delivery technique will be convenient and significantly increase the efficiency of medicines.
|
2 |
Desenvolvimento de metodologia do projeto do reator eletrônico auto-oscilante com entrada universal / Development of methodology of self-oscillating electronic ballast design with universal inputLopes, Juliano de Pelegrini 14 January 2010 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / This work presents the design and analysis of an electronic system with universal input to supply a fluorescent lamp. The system includes a self-oscillating electronic ballast and an additional circuit which allows keeping the nominal lamp power although a variation
of the input voltage. The electronic ballast design comprises some steps: resonant filter design, self-oscillating gate driver design, additional circuit design and stability test. The electronic ballast is represented as a nonlinear control system in order to achieve a feasible design methodology. Moreover, the system must be analyzed considering the describing function method and the extended Nyquist stability criterion. The proposed electronic ballast must maintain the main characteristics of the traditional self-oscillating electronic ballast.
Besides that, the additional circuit has a small number of components and it allows the input voltage full range with automatic selection of the switching frequency. The design, simulation and experimental results of the prototype are presented. / Este trabalho apresenta a análise e o projeto de um sistema eletrônico com entrada universal para alimentação de lâmpadas fluorescentes. O sistema é composto por um reator
eletrônico auto-oscilante com um circuito adicional, que permite manter a potência da lâmpada no valor nominal independente da tensão de alimentação. O projeto do reator
eletrônico é dividido em etapas, que compreendem o projeto do filtro ressonante, do comando auto-oscilante, do circuito adicional e a análise da oscilação auto-sustentada. Para viabilizar uma metodologia de projeto adequada, o reator eletrônico é representado como um sistema de controle. Para análise e projeto são utilizados a função descritiva e o critério de estabilidade estendido de Nyquist. O reator eletrônico mantém as principais características do reator eletrônico auto-oscilante tradicional. Além disso, o circuito adicional possui um número reduzido de componentes, o que permite empregar o reator eletrônico em qualquer rede de alimentação monofásica sem a necessidade de ajuste manual para escolha da tensão de alimentação. São apresentados resultados de simulação e experimentais do protótipo implementado.
|
3 |
Études de systèmes thermo-fluidiques auto-oscillants pour des applications de récupération d'énergie thermiqueMonin, Thomas January 2017 (has links)
Les progrès technologiques considérables menés depuis ces dernières décennies
nous permettent aujourd’hui de disséminer dans notre environnement une nuée de
noeuds de capteurs communicants combinant la taille micrométrique et la consommation
dérisoire caractéristiques des MEMS avec la puissance des protocoles de
communications Internet. L’Internet des Objets, formé par ce réseau de capteurs,
possède le potentiel d‘optimiser un grand panel d’applications industrielles et domotiques.
Le nouveau défi, que la communauté du Energy Harvesting tente de relever
depuis une décennie maintenant, est de rendre ces noeuds de capteurs autonomes
en les alimentant grâce à l’énergie perdue dans leur environnement.
Dans ces travaux de recherche, nous explorons le potentiel d’un principe thermo-fluidique
auto-oscillant pour la génération d’énergie utile à partir d’une source thermique
de faible qualité. L’implémentation de cette technologie en tant que machine
thermique est étudiée et mène à la caractérisation d’un nouveau cycle thermodynamique
caractéristique du SOFHE (Self Oscillating Fluidic Heat Engine).
Nous montrons, par une approche phénoménologique, que notre machine thermique
se comporte comme un oscillateur mécanique, excité par les évaporations
et condensations successives du fluide de travail. Ces changements de phase alternatifs
mettent en mouvement une colonne d’eau, jouant le rôle de masse, couplée
à une zone de vapeur, jouant le rôle d’un ressort.
Une étude de l’influence du couplage du SOFHE avec un transducteur électromécanique,
représenté par un oscillateur, mène à la conception et la fabrication d’une spirale
piézoélectrique. L’intégration de cette spirale à notre machine thermique forme
un générateur thermo-électrique dont les capacités de conversion sont démontrées
par la charge d’une capacité.
Finalement, la miniaturisation du principe thermo-fluidique SOFHE est rendue possible
par la réalisation d’un procédé de fabrication utilisant les techniques MEMS.
Des dispositifs miniatures parviennent à exhiber un comportement oscillatoire montrant
le potentiel d’intégration de cette technologie. / Abstract : The tremendous technological progresses realized in the last decades allow us to
swarm our environment with Wireless Sensors Networks. These WSNs combine the
MEMS’ miniature size and low energy consumption, and the powerful Internet communication
protocols. This Internet of Things shows great potential in many applications
such as industry or housing. For a decade now, the Energy Harvesting community
wants to build autonomous WSNs by enabling them to feed off energy wastes.
In this work, we study the electricity generation capabilities of a Self-Oscillating Fluidic
Heat Engine (SOFHE) and present its characteristic thermodynamic cycle. Our
model shows that the SOFHE acts as a mechanical resonator excited by the successive
evaporation and condensation processes underwent by the working fluid.
These phase changes put a liquid mass in motion, coupled with a vapor spring. The
coupling of our heat engine with an electromechanical transducer is studied and
leads to a piezoelectric spiral conception and fabrication. Their association forms a
thermo-electrical generator able to power and charge an electrical capacitor. Eventually,
we demonstrate the miniaturization prospects and integration potential of this
SOFHE technology. A micro-fabrication process enables a SOFHE MEMS implementation.
Our process includes a deep glass wet etching step as well as a Au-Si
eutectic wafer bonding.
|
Page generated in 0.083 seconds