• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 2
  • 2
  • Tagged with
  • 21
  • 21
  • 11
  • 11
  • 11
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Auto-redução e fusão redução de pelotas auto-redutoras de cromita. / Self-reduction and fusion reduction of chromite self-reducing pellets

Pillihuaman Zambrano, Adolfo 05 October 2009 (has links)
Neste trabalho estudou-se a evolução da redução da pelota auto-redutora de cromita contendo coque de petróleo, ferro-silício, cal hidratada, sílica e cimento Portland ARI (alta Resistência Inicial), para a obtenção da liga ferro-cromo alto carbono (FeCrAC). As principais variáveis estudadas foram: influência das adições de Fe-75%Si em sinergismo com coque de petróleo, adição de fluxantes, temperatura e tempo de redução. Além disso, foram realizadas experiências para confirmação dos resultados de auto-redução num forno rotativo de laboratório. Inicialmente os materiais (cromita, ferro-silício, coque de petróleo, cal dolomitica, sílica e cimento Portland ARI), foram caracterizados por análise química e análise granulométrica. Após a caracterização, os materiais, foram aglomerados na forma de pelotas (P1, P2, P3, P4 e P5), com adições de 0, 1, 2 e 4% Fe-75%Si, e adições de 2% Fe-75%Si e de fluxantes (3,83% cal dolomitica e 2,88% sílica), respectivamente. A redução das pelotas foi feita num forno de indução podendo atingir temperaturas de até 1973K (1700oC). Os ensaios experimentais foram realizados nas temperaturas de 1773K (1500°C), 1823K (1550oC) e 1873K (1600oC), utilizando-se cadinhos de grafite. Após os ensaios de redução os produtos obtidos (escória e metal) foram analisados por microscopia ótica, por microscopia eletrônica de varredura (MEV) e por análise de espectro de dispersão de energia (EDS). O processo de redução nas pelotas 1, 2, 3 e 4 segue os seguintes fenômenos i) via intermediários gasosos (CO/cromita) formam-se glóbulos metálicos nucleados na superfície das partículas de cromita, inicialmente rico em ferro; ii) estes crescem, pela redução na superfície da cromita deixando óxidos refratários na periferia da partícula de cromita original; iii) uma escoria incipiente se forma com os componentes da pelota (aglomerantes inorgânicos, cinza do redutor e fluxantes) e com a dissolução da ganga das partículas pequenas reduzidas da cromita; iv) a escória incipiente dissolve parte refratária da superfície da cromita, liberando a fase metálica e a escória vai se tornando cada vez mais refratária; v) o nódulo metálico segue crescendo e enriquecendo-se de cromo, reduzindo os óxidos de cromo e eventualmente de ferro dissolvido na escória incipiente; vi) o coalescimento da fase metálica é favorecido pela formação de escória e dissolução da ganga refrataria da cromita. O processo de redução da pelota 5 pela presença de fluxantes forma uma quantidade maior de escória inicial e apresenta os seguintes fenômenos: i) as reações indireta e direta reduzem as partículas finas de cromita, com formação de nódulos metálicos e fase escória nos primeiros instantes de redução; ii) os nódulos metálicos são formados pela redução das partículas finas de cromita. As partículas grandes sofrem pequena redução superficial e são encobertas pela escória, permanecendo dispersas na mesma; iii) a formação de escória encobrindo a cromita prejudica a redução gasosa aumentando o tempo de redução da mesma, porem facilita o coalescimento da fase metálica; iv) o nódulo metálico segue crescendo e enriquecendo-se de cromo, reduzindo aos poucos as partículas grandes de cromita. Existe regeneração do gás redutor (Boudouard) que pode ser diretamente com C do redutor ou com C dissolvido na fase metálica. A auto-redução carbotérmica das pelotas de cromita, na faixa de temperatura 1773K (1500oC) a 1873K (1600°C), sofre grande influência da temperatura, seja com ou sem adição de Fe-75%Si. O aumento da temperatura de 1773K (1500°C) para 1873K (1600°C) diminui o tempo para atingir redução completa conforme segue: i) 8 vezes para pelota sem Fe-75%Si; ii) 4 vezes para pelota com 1% de Fe-75%Si; e iii) 3 vezes para pelota com 2% de Fe-75%Si. Há um efeito significativo de adições de Fe-75%Si em pelotas auto-redutoras de cromita no tempo para atingir redução completa. O teor benéfico destas adições foi de 2%, contribuindo com aproximadamente 9% de calor necessário para redução completa, para as temperaturas ensaiadas de 1873K (1600ºC), 1823K (1550ºC) e 1773K (1500ºC). A evolução da redução é altamente sensível (diminui) com adição de fluxantes formadores de escória com temperatura líquidus abaixo de 1773K (1500ºC). A evolução da redução pela reação indireta (CO/cromita) é notavelmente mais rápida que a redução pela reação direta (C/cromita e C dissolvido na fase metálica/óxido de cromo na escória). A redução gasosa atuante nos primeiros estágios de redução, vai sendo prejudicada à medida que aumenta a quantidade de escória. As pelotas (1, 2, 3 e 4) sem adição de fluxantes (sílica e cal dolomítica), após reduzidas, são altamente porosas e têm pequena formação de fase escória se comparar com aquelas com adição de fluxantes com formação maior de fase escória (pelota 5). A pelota 3 com 2% de Fe-75%Si apresentou melhores resultados em relação ao tempo de redução. A pelota com adição de 4% Fe-75%Si (pelota 4), não apresentou diminuição do tempo de redução, devido a uma maior formação de escória que prejudica a reação indireta (mais rápida). As evidências micrográficas, auxiliadas por análises por EDS, mostraram que as reduções das partículas de cromita, foram praticamente completas quando as frações de reação se aproximam da unidade, confirmando a confiabilidade da metodologia utilizada. A redução da pelota auto-redutora, independente da sua composição, acontece de forma não isotérmica apesar de ser ensaiada numa temperatura isotérmica, apresentando-se um gradiente de temperatura entre a superfície e o centro da pelota, ao longo do tempo, mas esta desaparece conforme a reação progride tornando-se uniforme ao final da reação; evidenciando que a transferência de calor é a etapa lenta do processo devido: às reações de redução serem bastante endotérmicas; ao tamanho das pelotas; às altas temperaturas; e por ser um material poroso e refratário. A resistência a compressão das pelotas (1, 2, 3, 4 e 5) após 28 dias de cura e antes de serem reduzidas foi de ~4 kgf/pelota, porém tornou-se bastante alta após reduzidas (150 a 400 kgf/pelota); tornando-as aptas para carga em reatores de fusão. Estes resultados foram confirmados com ensaios no forno rotativo de laboratório, utilizando-se a pelota 2 (2% de Fe-75%Si), evidenciando: i) que as reduções de Cr e Fe foram praticamente completas (fração média de reação de 0,99) em 30 minutos de ensaio a 1500ºC; ii) a coalescência das partículas metálicas, obtidas por redução depende da capacidade da escória de dissolver os óxidos remanescentes na partícula de cromita reduzida; iii) há formação de fase incipiente de escória não-continua, aos 5 minutos de ensaio, pela parte da ganga do minério de cromita com os componentes de aglomerantes e/ou fluxantes; iv) a recuperação do teor metálico é alto (99%), em 30 minutos de ensaio, a 1500º C. Os resultados mostram um grande potencial do processo de auto-redução na produção de ferro-cromo alto carbono (FeCrAC). / The evolution of reduction of the self-reducing pellets of chromite for obtaining ferro-chromium high carbon (FeCrHC) was analyzed. The influences of Fe-75%Si additions, addition of fluxing agents, temperature and time of reduction were studied. The materials (chromite, ferro-silicon, petroleum coke, dolomite lime, silica and cement Portland), were characterized by chemical and particle size analysis. After characterization, the materials were agglomerated in the form of pellets (P1, P2, P3 and P4), with additions of 0, 1, 2 and 4% Fe-75%Si, respectively, and P5 with additions of 2% Fe-75%Si and fluxing agents (3.83% dolomite lime and 2.88% silica). The reduction of pellets was made using induction furnace with capability to reach temperatures up to 1973K (1700ºC). The experiments were performed at temperatures of 1773K (1500ºC), 1823K (1550ºC) and 1873K (1600ºC), using graphite crucibles. After the reduction the products (slag and metal) were analyzed by optical microscopy, scanning electronic microscopy (MEV) and energy dispersion spectrum analysis (EDS). The reduction process in pellets 1, 2, 3 and 4 followed phenomena as: i) gaseous reduction (CO/chromite) produces metallic globules on the surface of chromite particles, initially rich in iron; ii) these globules grow continuing the reduction at the periphery of chromite particles, leaving refractory oxides at this area of the original chromite particle; iii) an incipient slag is formed with the components of the pellet (inorganic binders, ash of reducer and fluxing agents) and with the dissolution of gangue from small particles of the reduced chromite; iv) the incipient slag dissolves refractory oxides remaining at the periphery of the chromite particles, liberating the metallic phase and the slag becomes more refractory; v) the metallic phase grows and becomes richer in chromium by reducing chromium oxides and eventually of iron dissolved in the incipient slag; vi) the coalescence of the metallic phase is favored by the slag formation and dissolution of refractory gangue of the chromite. The reduction process of pellet 5 follows as: i) indirect and direct reactions reduce fine particles of chromite, with formation of metallic nodules and slag phase at the beginning of reduction; ii) the metallic nodules are formed by the reduction of fine particles of chromite. Large chromite particles are reduced at the peripherical surfaces and are embebeded by the slag and remain dispersed in it; iii) the slag formed is harmful for the gaseous reduction and the time for completing the reduction is increased, but facilitates the coalescence of the metallic phase; iv) the metallic nodule follows growing and becomes richer in chromium. The carbothermic self-reduction pellets of the chromite at the temperature range of 1773K (1500ºC)-1873K (1600ºC), presents great influence of the temperature, either, with or without addition of Fe-75%Si. The increase of the temperature from 1773K (1500ºC) to 1873K (1600ºC) decreases the time for completing the reduction as: i) 8 times for pellet without Fe-75%Si; ii) 4 times for pellet with 1% of Fe-75%Si; and iii) 3 times for pellet with 2% of Fe-75%Si. A significant effect of additions of Fe-75%Si in self-reducing pellets of chromite in the reduction time was observed. The best addition was with 2% and its contribution was approximately 9% of necessary heat for complete the reduction, for the temperatures of 1873K (1600ºC), 1823K (1550ºC) and 1773K (1500ºC). The evolution of reduction is highly sensitive (it decreases) with addition of fluxing agents which form the slag with liquidus temperature below 1500ºC. The evolution of reduction for the indirect reaction (CO/chromites) is remarkably faster than that of the reduction by the direct reaction (C/chromite and C dissolved in the metallic phase/chromium oxide in the slag). At the beginning the gaseous reduction is predominant but it becomes less important with formation of larger amount of slag. The pellets (1, 2, 3 and 4) without addition of fluxing agents (silica and dolomite lime), after reduced, are highly porous and have small formation of slag phase than pellet 5 with addition of fluxing agents. Pellet 3 with 2% of Fe-75%Si presented the best results with relation to time for completing the reduction of chromite. The pellet with addition of 4% Fe-75%Si (pellet 4) did not present advantage with relation to that of 2% addition due to larger volume of slag formation. The micrograph analysis showed that the reductions of chromite particles practically were complete when the reaction fractions approach to the unit, confirming the confidence of the methodology used for determining the reaction fraction. The reduction of the self-reducing pellet, regardless its composition, happens by not isothermal way although it is submitted at isothermal temperature. The temperature gradient between surface and the core of the pellet is larger at the beginning but it disappears as the reaction progresses, becoming uniform with time. The heat transfer showed to be the slowest step of the process due to, the endothermic reactions of reduction, the size of the pellets, the high temperatures and porous nature and refractory material. The compression strength of the pellets (1, 2, 3, 4 and 5), after 28 days of curing, before of the reduction was ~4kgf/pellet but it increased up to 150 - 400 kgf/pellet; which are acceptable for charging the melting furnace for metal/slag separation. These results were confirmed by using laboratory rotating furnace, with pellet 2 (2% of Fe-75%Si), as: i) the reductions of Cr and Fe were practically complete (fraction of reaction 0,99) after 30 minutes of experiment at 1500ºC; ii) the coalescence of metallic particles, depends the capability of the slag to dissolve remaining oxides in the reduced chromite particle; iii) incipient not-continuous slag phase forms, at 5 minutes of experiment, from the gangue of the chromite and from the components of binders and/or fluxing agents; iv) the yield of metallic recovery is high (99%), after 30 minutes of experiment at1500º C. The results show that the self-reduction process presents a great potential for the ferro-chromium high carbon production (FeCrHC).
2

Auto-redução e fusão redução de pelotas auto-redutoras de cromita. / Self-reduction and fusion reduction of chromite self-reducing pellets

Adolfo Pillihuaman Zambrano 05 October 2009 (has links)
Neste trabalho estudou-se a evolução da redução da pelota auto-redutora de cromita contendo coque de petróleo, ferro-silício, cal hidratada, sílica e cimento Portland ARI (alta Resistência Inicial), para a obtenção da liga ferro-cromo alto carbono (FeCrAC). As principais variáveis estudadas foram: influência das adições de Fe-75%Si em sinergismo com coque de petróleo, adição de fluxantes, temperatura e tempo de redução. Além disso, foram realizadas experiências para confirmação dos resultados de auto-redução num forno rotativo de laboratório. Inicialmente os materiais (cromita, ferro-silício, coque de petróleo, cal dolomitica, sílica e cimento Portland ARI), foram caracterizados por análise química e análise granulométrica. Após a caracterização, os materiais, foram aglomerados na forma de pelotas (P1, P2, P3, P4 e P5), com adições de 0, 1, 2 e 4% Fe-75%Si, e adições de 2% Fe-75%Si e de fluxantes (3,83% cal dolomitica e 2,88% sílica), respectivamente. A redução das pelotas foi feita num forno de indução podendo atingir temperaturas de até 1973K (1700oC). Os ensaios experimentais foram realizados nas temperaturas de 1773K (1500°C), 1823K (1550oC) e 1873K (1600oC), utilizando-se cadinhos de grafite. Após os ensaios de redução os produtos obtidos (escória e metal) foram analisados por microscopia ótica, por microscopia eletrônica de varredura (MEV) e por análise de espectro de dispersão de energia (EDS). O processo de redução nas pelotas 1, 2, 3 e 4 segue os seguintes fenômenos i) via intermediários gasosos (CO/cromita) formam-se glóbulos metálicos nucleados na superfície das partículas de cromita, inicialmente rico em ferro; ii) estes crescem, pela redução na superfície da cromita deixando óxidos refratários na periferia da partícula de cromita original; iii) uma escoria incipiente se forma com os componentes da pelota (aglomerantes inorgânicos, cinza do redutor e fluxantes) e com a dissolução da ganga das partículas pequenas reduzidas da cromita; iv) a escória incipiente dissolve parte refratária da superfície da cromita, liberando a fase metálica e a escória vai se tornando cada vez mais refratária; v) o nódulo metálico segue crescendo e enriquecendo-se de cromo, reduzindo os óxidos de cromo e eventualmente de ferro dissolvido na escória incipiente; vi) o coalescimento da fase metálica é favorecido pela formação de escória e dissolução da ganga refrataria da cromita. O processo de redução da pelota 5 pela presença de fluxantes forma uma quantidade maior de escória inicial e apresenta os seguintes fenômenos: i) as reações indireta e direta reduzem as partículas finas de cromita, com formação de nódulos metálicos e fase escória nos primeiros instantes de redução; ii) os nódulos metálicos são formados pela redução das partículas finas de cromita. As partículas grandes sofrem pequena redução superficial e são encobertas pela escória, permanecendo dispersas na mesma; iii) a formação de escória encobrindo a cromita prejudica a redução gasosa aumentando o tempo de redução da mesma, porem facilita o coalescimento da fase metálica; iv) o nódulo metálico segue crescendo e enriquecendo-se de cromo, reduzindo aos poucos as partículas grandes de cromita. Existe regeneração do gás redutor (Boudouard) que pode ser diretamente com C do redutor ou com C dissolvido na fase metálica. A auto-redução carbotérmica das pelotas de cromita, na faixa de temperatura 1773K (1500oC) a 1873K (1600°C), sofre grande influência da temperatura, seja com ou sem adição de Fe-75%Si. O aumento da temperatura de 1773K (1500°C) para 1873K (1600°C) diminui o tempo para atingir redução completa conforme segue: i) 8 vezes para pelota sem Fe-75%Si; ii) 4 vezes para pelota com 1% de Fe-75%Si; e iii) 3 vezes para pelota com 2% de Fe-75%Si. Há um efeito significativo de adições de Fe-75%Si em pelotas auto-redutoras de cromita no tempo para atingir redução completa. O teor benéfico destas adições foi de 2%, contribuindo com aproximadamente 9% de calor necessário para redução completa, para as temperaturas ensaiadas de 1873K (1600ºC), 1823K (1550ºC) e 1773K (1500ºC). A evolução da redução é altamente sensível (diminui) com adição de fluxantes formadores de escória com temperatura líquidus abaixo de 1773K (1500ºC). A evolução da redução pela reação indireta (CO/cromita) é notavelmente mais rápida que a redução pela reação direta (C/cromita e C dissolvido na fase metálica/óxido de cromo na escória). A redução gasosa atuante nos primeiros estágios de redução, vai sendo prejudicada à medida que aumenta a quantidade de escória. As pelotas (1, 2, 3 e 4) sem adição de fluxantes (sílica e cal dolomítica), após reduzidas, são altamente porosas e têm pequena formação de fase escória se comparar com aquelas com adição de fluxantes com formação maior de fase escória (pelota 5). A pelota 3 com 2% de Fe-75%Si apresentou melhores resultados em relação ao tempo de redução. A pelota com adição de 4% Fe-75%Si (pelota 4), não apresentou diminuição do tempo de redução, devido a uma maior formação de escória que prejudica a reação indireta (mais rápida). As evidências micrográficas, auxiliadas por análises por EDS, mostraram que as reduções das partículas de cromita, foram praticamente completas quando as frações de reação se aproximam da unidade, confirmando a confiabilidade da metodologia utilizada. A redução da pelota auto-redutora, independente da sua composição, acontece de forma não isotérmica apesar de ser ensaiada numa temperatura isotérmica, apresentando-se um gradiente de temperatura entre a superfície e o centro da pelota, ao longo do tempo, mas esta desaparece conforme a reação progride tornando-se uniforme ao final da reação; evidenciando que a transferência de calor é a etapa lenta do processo devido: às reações de redução serem bastante endotérmicas; ao tamanho das pelotas; às altas temperaturas; e por ser um material poroso e refratário. A resistência a compressão das pelotas (1, 2, 3, 4 e 5) após 28 dias de cura e antes de serem reduzidas foi de ~4 kgf/pelota, porém tornou-se bastante alta após reduzidas (150 a 400 kgf/pelota); tornando-as aptas para carga em reatores de fusão. Estes resultados foram confirmados com ensaios no forno rotativo de laboratório, utilizando-se a pelota 2 (2% de Fe-75%Si), evidenciando: i) que as reduções de Cr e Fe foram praticamente completas (fração média de reação de 0,99) em 30 minutos de ensaio a 1500ºC; ii) a coalescência das partículas metálicas, obtidas por redução depende da capacidade da escória de dissolver os óxidos remanescentes na partícula de cromita reduzida; iii) há formação de fase incipiente de escória não-continua, aos 5 minutos de ensaio, pela parte da ganga do minério de cromita com os componentes de aglomerantes e/ou fluxantes; iv) a recuperação do teor metálico é alto (99%), em 30 minutos de ensaio, a 1500º C. Os resultados mostram um grande potencial do processo de auto-redução na produção de ferro-cromo alto carbono (FeCrAC). / The evolution of reduction of the self-reducing pellets of chromite for obtaining ferro-chromium high carbon (FeCrHC) was analyzed. The influences of Fe-75%Si additions, addition of fluxing agents, temperature and time of reduction were studied. The materials (chromite, ferro-silicon, petroleum coke, dolomite lime, silica and cement Portland), were characterized by chemical and particle size analysis. After characterization, the materials were agglomerated in the form of pellets (P1, P2, P3 and P4), with additions of 0, 1, 2 and 4% Fe-75%Si, respectively, and P5 with additions of 2% Fe-75%Si and fluxing agents (3.83% dolomite lime and 2.88% silica). The reduction of pellets was made using induction furnace with capability to reach temperatures up to 1973K (1700ºC). The experiments were performed at temperatures of 1773K (1500ºC), 1823K (1550ºC) and 1873K (1600ºC), using graphite crucibles. After the reduction the products (slag and metal) were analyzed by optical microscopy, scanning electronic microscopy (MEV) and energy dispersion spectrum analysis (EDS). The reduction process in pellets 1, 2, 3 and 4 followed phenomena as: i) gaseous reduction (CO/chromite) produces metallic globules on the surface of chromite particles, initially rich in iron; ii) these globules grow continuing the reduction at the periphery of chromite particles, leaving refractory oxides at this area of the original chromite particle; iii) an incipient slag is formed with the components of the pellet (inorganic binders, ash of reducer and fluxing agents) and with the dissolution of gangue from small particles of the reduced chromite; iv) the incipient slag dissolves refractory oxides remaining at the periphery of the chromite particles, liberating the metallic phase and the slag becomes more refractory; v) the metallic phase grows and becomes richer in chromium by reducing chromium oxides and eventually of iron dissolved in the incipient slag; vi) the coalescence of the metallic phase is favored by the slag formation and dissolution of refractory gangue of the chromite. The reduction process of pellet 5 follows as: i) indirect and direct reactions reduce fine particles of chromite, with formation of metallic nodules and slag phase at the beginning of reduction; ii) the metallic nodules are formed by the reduction of fine particles of chromite. Large chromite particles are reduced at the peripherical surfaces and are embebeded by the slag and remain dispersed in it; iii) the slag formed is harmful for the gaseous reduction and the time for completing the reduction is increased, but facilitates the coalescence of the metallic phase; iv) the metallic nodule follows growing and becomes richer in chromium. The carbothermic self-reduction pellets of the chromite at the temperature range of 1773K (1500ºC)-1873K (1600ºC), presents great influence of the temperature, either, with or without addition of Fe-75%Si. The increase of the temperature from 1773K (1500ºC) to 1873K (1600ºC) decreases the time for completing the reduction as: i) 8 times for pellet without Fe-75%Si; ii) 4 times for pellet with 1% of Fe-75%Si; and iii) 3 times for pellet with 2% of Fe-75%Si. A significant effect of additions of Fe-75%Si in self-reducing pellets of chromite in the reduction time was observed. The best addition was with 2% and its contribution was approximately 9% of necessary heat for complete the reduction, for the temperatures of 1873K (1600ºC), 1823K (1550ºC) and 1773K (1500ºC). The evolution of reduction is highly sensitive (it decreases) with addition of fluxing agents which form the slag with liquidus temperature below 1500ºC. The evolution of reduction for the indirect reaction (CO/chromites) is remarkably faster than that of the reduction by the direct reaction (C/chromite and C dissolved in the metallic phase/chromium oxide in the slag). At the beginning the gaseous reduction is predominant but it becomes less important with formation of larger amount of slag. The pellets (1, 2, 3 and 4) without addition of fluxing agents (silica and dolomite lime), after reduced, are highly porous and have small formation of slag phase than pellet 5 with addition of fluxing agents. Pellet 3 with 2% of Fe-75%Si presented the best results with relation to time for completing the reduction of chromite. The pellet with addition of 4% Fe-75%Si (pellet 4) did not present advantage with relation to that of 2% addition due to larger volume of slag formation. The micrograph analysis showed that the reductions of chromite particles practically were complete when the reaction fractions approach to the unit, confirming the confidence of the methodology used for determining the reaction fraction. The reduction of the self-reducing pellet, regardless its composition, happens by not isothermal way although it is submitted at isothermal temperature. The temperature gradient between surface and the core of the pellet is larger at the beginning but it disappears as the reaction progresses, becoming uniform with time. The heat transfer showed to be the slowest step of the process due to, the endothermic reactions of reduction, the size of the pellets, the high temperatures and porous nature and refractory material. The compression strength of the pellets (1, 2, 3, 4 and 5), after 28 days of curing, before of the reduction was ~4kgf/pellet but it increased up to 150 - 400 kgf/pellet; which are acceptable for charging the melting furnace for metal/slag separation. These results were confirmed by using laboratory rotating furnace, with pellet 2 (2% of Fe-75%Si), as: i) the reductions of Cr and Fe were practically complete (fraction of reaction 0,99) after 30 minutes of experiment at 1500ºC; ii) the coalescence of metallic particles, depends the capability of the slag to dissolve remaining oxides in the reduced chromite particle; iii) incipient not-continuous slag phase forms, at 5 minutes of experiment, from the gangue of the chromite and from the components of binders and/or fluxing agents; iv) the yield of metallic recovery is high (99%), after 30 minutes of experiment at1500º C. The results show that the self-reduction process presents a great potential for the ferro-chromium high carbon production (FeCrHC).
3

Análise do processo de redução de minério de ferro por carbono na forma de pelotas auto-redutoras. / Analysis of the iron ore reduction process by carbon in the form of self-reducing pellets.

Mourão, Marcelo Breda 09 December 1988 (has links)
Através de revisão bibliográfica e estudo experimental, o presente trabalho apresenta uma análise da influência de diversos parâmetros sobre a velocidade da reação entre minério de ferro e carbono, aglomerados na forma de pelotas auto-redutoras. Os parâmetros estudados foram: temperatura, tipo e quantidade de redutor, uso de adições, composição e vazão dos gases no recipiente de reação, tamanho da pelota. A técnica experimental consistiu em medi-se a velocidade de reação por análise termogravimétrica, complementada por análise do gás de saída e difração de Raios-X em pelotas parcialmente reduzidas. Verificou-se que o mecanismo controlador da velocidade de reação é determinado por um conjunto de parâmetros inter-relacionados, e que pode mudar o progresso de reação. A etapa química da reação é controlada pela gaseificação do carbono por CO2. Transporte de calor e difusão gasosa através dos poros da pelota exercem forte influência sobre a velocidade; os fatores que favorecem a influência de transporte de calor são: aumento de temperatura; aumento da reatividade do redutor; uso de catalisador; diminuição do diâmetro da pelota; início de reação; redução sob atmosfera CO/CO2 de composição próxima ao equilíbrio wustitaferro. A influência de difusão gasosa se faz sentir quando a reação é efetuada sob atmosfera de gás inerte, que penetra nos poros da pelota, diluindo a atmosfera CO/CO2 reinante no interior da mistura de partículas. Nessas condições, esta influência é maior quanto menor for a temperatura de reação, quanto menos reativo for o redutor, quanto menor for a pelota, e nos estágios finais de reação. Verificou-se ainda que parâmetros relacionados à composição das pelotas, bem como a temperatura do processo, tem grande influência sobre o comportamento dimensional dos aglomerados.Assim, pelotas com ganga básica (com carvão vegetal e adições básicas) tendem a inchar catastroficamente, ao passo que pelotas com ganga ácida (com coque ou carvão mineral como redutores) não apresentam este fenômeno. Microscopia eletrônica de varredura indicou a presença de ferro filamentar em pelotas que apresentaram inchamento catastrófico. Analisou-se ainda como a presença de matéria volátil no redutor afeta a cinética de reação e o comportamento dimensional das pelotas, e também sob que condições o ferro formado na redução catalisa a reação. / The factors that affect the rate of reaction between iron oxides and carbon were analysed by means of literature review and experimental investigation. The iron ore and the carbon were agglomerated in the form of self-reducing pellets. The investigated variables were: temperature, type and amount of redactor, presence of additives, gas composition and flow in the reactor vessel, and pellet\'s size. The experimental technique employed was thermogravimetric analysis, complemented by gas analysis and X-ray diffraction. It was shown that the rate control may change in the course of the reaction, and it depends on a number of interrelated varibles. The slowest reaction of the chemical step is the carbon gaseification by CO2. Heat transfer and gaseous diffusion through pellets pores play an important role in the rate; the factors that favours the heat transfer influence are: temperature increase, reducto\'s reactivity increase, the use of catalyst, pellet\'s size decrease, start up the reaction; reduction under CO/CO2 atmosphere near wustite-iron equilibrium. When the reaction is performed under inert gas atmosphere, gaseous diffusion through pellet\'s pores can dilute the CO/CO2 atmosphere prevailing in the pallet\'s core. Under these conditions, this effect is more pronounced for lower temperature, lower carbon reactivity, smaller pellets and at the end of the reaction. It was also found that variables related to pellet composition as well as process temperature greatly affect the pellet\'s dimensional behavior. In fact, pellets containing basic guangue (e.g.wood charcoal and/or basic additives) show catastrophic swelling; in contrast, pellets containing acid gangue (e.g. coke or coal) have good dimensional stability. Iron whiskers were observed with scanning electron microscope on pellets that swell catastrophically. The influence of reductor\'s volatile matter upon kinetics and dimensional behavior of pellets was also analysed as well as the catalysis of the reaction by the iron formed in the course of the reduction.
4

Estudo da utilização de energia de microondas na redução de minério de ferro por carbono na forma de pelotas auto-redutoras. / Utilisation of microwave energy in carbothermic reduction of iron ore by self-reduction pellets.

Carvalho Junior, Ivan Parreiras de 14 March 2001 (has links)
A redução carbotérmica do minério de ferro é a mais importante reação na fabricação do ferro, e tem sido obtida principalmente em Alto-Forno. Nos últimos anos, muitos processos novos foram propostos como alternativas e vários tipos de reatores foram testados. O processo mais promissor foi aquele em que a mistura minério de ferro e material carbonáceo eram aquecidos a altas temperaturas, promovendo a reação com formação do ferro metálico. Tornou-se claro que um dos principais obstáculos para a rápida reação é a transferência de calor da região externa para o centro da mistura. Por outro lado, muitos estudos têm mostrado que o aquecimento por microondas é muito efetivo em processos industriais, como secagem e sinterização de cerâmicos. No aquecimento por microondas, o material é aquecido a partir de seu interior, logo evita a obrigação de um aquecimento de fora para dentro do material. Neste trabalho, o aquecimento por microondas foi aplicado para a redução carbotérmica da hematita. Os resultados obtidos mostraram que é possível aquecer a mistura minério de ferro - carbono acima da temperatura de reação e que a taxa de reação é comparável à obtida por aquecimento convencional utilizando-se a mesma mistura. / The carbothermic reduction of iron ores is the most important reaction in ironmaking, and has been performed mainly in the Blast Furnace. In the last years, several new processes have been proposed as alternatives, and many types of reactors have been tested. The most promising processes are those in which a mixture of iron ore and carbonaceous material is heated at high temperatures, promoting the reaction with formation of metallic iron. It became clear that one of the main obstacles to a fast reaction is heat transfer from the surroundings to the core of the mixture. On the other hand, several studies have shown that microwave heating is very effective in some industrial processes, like drying and sintering of ceramics. In the microwave heating, the material is heated from the inside, thus avoiding the constraints of heat transfer from the surroundings to the inner part of the material. In this work, microwave heating has been applied to the carbothermic reduction of hematite. The obtained results have show that it is possible to heat iron-carbon mixture above the reduction temperature, and the reaction rates have been compared to those obtained employing conventional heating with the same mixtures .
5

Obtenção de pelotas autorredutoras com poeira de aciaria elétrica para uso em fornos elétricos a arco

Ferreira, Felipe Buboltz January 2016 (has links)
O Pó de Aciaria Elétrica (PAE) é um resíduo sólido originado na fabricação de aços em Fornos Elétricos a Arco (FEA), classificado como resíduo perigoso pela ABNT NBR 10004- 2004. Isto porque ele contém metais nocivos ao meio ambiente (como chumbo e cádmio), embora seja constituído, em sua maior parte, pelos elementos ferro, zinco e oxigênio. Devido aos custos onerosos para disposição e por tratar-se de resíduo perigoso, a indústria procura pela possibilidade de retorno ao processo produtivo do aço. Uma das alternativas é a reintrodução na aciaria elétrica através de aglomerados autorredutores como parte da carga do FEA. Neste trabalho, são produzidas misturas autorredutoras contendo PAE e coque de petróleo, apresentando as correspondentes caracterizações químicas e físicas. Através de ensaios termogravimétricos é feita uma avaliação do comportamento destas misturas, mostrando a possibilidade do emprego desta técnica na aferição prática do teor ótimo de coque, em aglomerados. Além disto, foram produzidas pelotas autorredutoras através do uso de um disco laboratorial, sendo as pelotas submetidas a testes físicos e mecânicos, com uso de aglomerantes e também testes de autorredução em fornos mufla e em aparato experimental. Como resultados destes experimentos pode-se concluir que o cimento Portland ARI e a combinação de cal hidratada com cinza de casca de arroz possuem melhor resistência a compressão frente aos outros ligantes utilizados. O grau de metalização obtido para a maior parte das amostras não passou de 35%. A remoção de zinco foi de aproximadamente 85%, para temperatura de 1100 ºC, com 45 minutos e com 10% de coque de petróleo. Isto indica a possibilidade de enriquecimento da nova poeira gerada em zinco. Fato este que agrega valor para tratamento do resíduo em outros processos externos. / The Electric Arc Furnace Dust (EAFD) is a solid waste generated by electric steelmaking, in Electric Arc Furnaces (EAF), being considered a hazardous waste by the Environmental Protection Agency. That is because of its harmful metals, although it is composed, in majority, by elements iron, zinc and oxygen. Due to high costs involved for its disposal and because it is a hazardous waste, industry seek for the possibility of returning the EAFD back to the steelmaking process. One of the alternatives is by reintroduction via electric meltshop through self-reducing agglomerates as part of the furnace burden. In this work, self-reducing mixtures of EAFD and petroleum coke were produced, showing as result corresponding chemical and physical characterizations. Using thermogravimetric tests, an evaluation of the mixtures behavior was carried out, demonstrating the possibility of using this technique in a practical measurement of optimal content of coke, in agglomerates. Furthermore, selfreducing pellets were pelletized using a laboratorial disc, with these agglomerates being tested in physical and mechanical strength essays, with different binders employed and also selfreduction tests in vertical electric furnace and experimental apparatus. As part of the results it could be concluded cement and the combination between hydrated lime and rice husk ash achieved the best results, in compressive strength, comparing to other binders. The metallization degree for almost all samples achieved a maximum of 35%. Zinc removal, for temperatures around 1100 ºC, in an experiment of 45 minutes and using 10% of petroleum coke, was approximately 85%. It indicates the dust to be enriched with zinc. This fact adds value to the waste for treatment in other processes.
6

Estudo de reciclagem da carepa através de briquetes autorredutores para uso em forno elétrico a arco

Bagatini, Maurício Covcevich January 2011 (has links)
A presente tese teve como objetivo fornecer subsídios teóricos e experimentais com vistas à reciclagem da carepa gerada em usinas mini-mills através de briquetes autorredutores para uso em FEA. Para atingir os objetivos vislumbrados, o trabalho foi estruturado em quatro principais tópicos: estudo de caracterização e de redutibilidade da carepa, escolha e caracterização do redutor para uso nos briquetes, elaboração e caracterização da mistura e ensaios de laboratório para avaliação do desempenho dos briquetes autorredutores. Os estudos de caracterização da carepa indicaram que este resíduo é constituído principalmente de wustita e se apresenta estratificada em três camadas: camada externa fina e porosa composta de hematita e magnetita, camada intermediária de wustita densa e camada interna de wustita porosa. A cinética de redução da carepa foi investigada em termobalança no intervalo de temperatura entre 830 e 1200°C com CO puro e mistura 90%CO-10%CO2. A energia de ativação aparente encontrada nesses ensaios variou de 71 a 80 kJ/mol e as observações microscópicas demonstraram que a redução da carepa segue um modelo topoquímico. A escolha do agente redutor para compor o briquete se deu através de ensaios de gaseificação ao CO2 e de autorredução em termobalança com três tipos de material carbonoso. A partir desses ensaios observou-se a seguinte ordem decrescente de reatividade e respectivas energias aparentes de ativação: Carvão Vegetal (Ea = 237 kJ/mol), Carvão Mineral (Ea = 214 kJ/mol) e Coque de Petróleo (Ea = 335 kJ/mol). Em virtude da maior reatividade do Carvão Vegetal frente aos demais, este redutor foi escolhido para uso nos briquetes. A mistura utilizada na confecção dos briquetes autorredutores teve como constituintes principais a carepa, os finos de carvão vegetal e aglomerantes (melaço e cal). Ensaios de caracterização em termobalança com atmosfera oxidante e aquecimento rápido indicaram uma perda de massa de cerca de 40%, referente às etapas de secagem, desvolatilização e autorredução da mistura. Nesses ensaios, observou-se elevadas taxas de perda de massa da mistura e uma notável complexidade dos fenômenos envolvidos, com reações simultâneas de combustão, autorredução e de oxidação do ferro, prevalecendo uma ou outra, dependendo da temperatura e da fração reagida de amostra. Através de procedimentos que buscaram reduzir a complexidade dos fenômenos envolvidos nas condições oxidantes, foi possível estimar que a energia de ativação aparente de autorredução está entre 62 e 69 kJ/mol. Os briquetes produzidos em escala industrial foram submetidos a ensaios isotérmicos e não-isotérmicos de alta temperatura. Tais ensaios buscaram determinar os gradientes térmicos no interior do briquete, a energia de ativação aparente e o desempenho cinético do aglomerado em condições de temperatura que se aproximam da prática industrial. A partir das constatações concernentes às taxas das reações químicas individuais (redução e gaseificação), às medidas do perfil de temperatura no interior dos aglomerados, à energia de ativação estimada para o briquete (93 kJ/mol) e ao modelo de redução encontrado nos ensaios de alta temperatura, acredita-se que tanto a cinética de redução da carepa como a transferência de calor sejam obstáculos limitantes da cinética global dos briquetes em estudo. Finalmente, os resultados de metalização obtidos nos testes de alta temperatura dão indícios da possibilidade de uso destes briquetes em FEA. / This dissertation aimed to provide theoretical and experimental basis for recycling of mill scale generated in mini-mill plants through the use of self-reducing briquettes in EAF. To reach these goals, the work was structured around four main topics: characterization and reducibility study of scale, choice and characterization of the reductant to use in briquettes, elaboration and characterization of the mixture and laboratory tests to performance evaluation of self-reducing briquettes. The characterization studies of mill scale have indicated that this waste is composed mainly of wustite and is stratified into three layers with different morphologies: fine porous external layer composed of hematite and magnetite, intermediate layer of dense wustite and inner layer of porous wustite. The kinetics of scale reduction was investigated in thermobalance in a temperature range from 830 to 1200°C with pure CO and a mixture of 90% CO and 10% CO2. The apparent activation energy obtained in these tests ranged from 71 to 80 kJ/mol and the microscopic observations showed that the mill scale reduction corresponds to a topochemical model. The choice of the reductant for composing the briquette was made through tests of gasification with CO2 and of self-reduction in thermobalance with three different carbonaceous materials. From the results, it was observed the following decreasing reactivity order and the related apparent activation energy: Charcoal (Ea = 237 kJ/mol), Mineral Coal (Ea = 214 kJ/mol) and Petroleum Coke (Ea = 335 kJ/mol). Due to the higher reactivity of Charcoal in relation to the others, this reducer was chosen to be used in the briquettes. The main constituents of the mixture used in the manufacture of self-reducing briquettes were scale, charcoal and binders (melasse and lime). The characterization tests in thermobalance with oxidizing athmosfere and rapid heating indicated a mass loss of about 40%, referring to the stages of drying, devolatilization and self-reduction of the mixture. During these tests, it were observed high rates of mixture loss mass and a remarkable complexity of the phenomena, with simultaneous combustion, self-reduction and iron oxidation reactions, where their importance changes according to temperature and fractional reaction of the sample. Through the procedures that aimed to reduce the complexity of the related phenomena in oxidant conditions, it was possible to estimate that the self-reduction apparent activation energy ranges between 62 to 69 kJ/mol. The briquettes produced in the industrial plant were submitted to isothermal and nonisothermal tests of high temperatures. Such tests aimed to determine the thermal gradients into the briquette, the apparent activation energy and kinetic performance of the agglomerate in temperature conditions similar to the ones used in industrial practice. Based on the findings concerning the individual rates of chemical reactions (reduction and gasification), the measures of the temperature profile inside the briquettes, the activation energy estimated (93 kJ/mol) and the reduction model found in high-temperature tests, it is assumed that both the kinetics of mill scale reduction and heat transfer limit the overall kinetic rates of these briquettes. Finally, the results of metallization obtained in the tests conducted at high temperatures indicate the possibility of using these briquettes into the EAF.
7

Self-Reduction for Combinatorial Optimisation

Sheppard, Nicholas Paul January 2001 (has links)
This thesis presents and develops a theory of self-reduction. This process is used to map instances of combinatorial optimisation problems onto smaller, more easily solvable instances in such a way that a solution of the former can be readily re-constructed, without loss of information or quality, from a solution of the latter. Self-reduction rules are surveyed for the Graph Colouring Problem, the Maximum Clique Problem, the Steiner Problem in Graphs, the Bin Packing Problem and the Set Covering Problem. This thesis introduces the problem of determining the maximum sequence of self-reductions on a given structure, and shows how the theory of confluence can be adapted from term re-writing to solve this problem by identifying rule sets for which all maximal reduction sequences are equivalent. Such confluence results are given for a number of reduction rules on problems on discrete systems. In contrast, NP-hardness results are also presented for some reduction rules. A probabilistic analysis of self-reductions on graphs is performed, showing that the expected number of self-reductions on a graph tends to zero as the order of the graph tends to infinity. An empirical study is performed comparing the performance of self-reduction, graph decomposition and direct methods of solving the Graph Colouring and Set Covering Problems. The results show that self-reduction is a potentially valuable, but sometimes erratic, method of finding exact solutions to combinatorial problems.
8

Self-Reduction for Combinatorial Optimisation

Sheppard, Nicholas Paul January 2001 (has links)
This thesis presents and develops a theory of self-reduction. This process is used to map instances of combinatorial optimisation problems onto smaller, more easily solvable instances in such a way that a solution of the former can be readily re-constructed, without loss of information or quality, from a solution of the latter. Self-reduction rules are surveyed for the Graph Colouring Problem, the Maximum Clique Problem, the Steiner Problem in Graphs, the Bin Packing Problem and the Set Covering Problem. This thesis introduces the problem of determining the maximum sequence of self-reductions on a given structure, and shows how the theory of confluence can be adapted from term re-writing to solve this problem by identifying rule sets for which all maximal reduction sequences are equivalent. Such confluence results are given for a number of reduction rules on problems on discrete systems. In contrast, NP-hardness results are also presented for some reduction rules. A probabilistic analysis of self-reductions on graphs is performed, showing that the expected number of self-reductions on a graph tends to zero as the order of the graph tends to infinity. An empirical study is performed comparing the performance of self-reduction, graph decomposition and direct methods of solving the Graph Colouring and Set Covering Problems. The results show that self-reduction is a potentially valuable, but sometimes erratic, method of finding exact solutions to combinatorial problems.
9

Estudo de reciclagem da carepa através de briquetes autorredutores para uso em forno elétrico a arco

Bagatini, Maurício Covcevich January 2011 (has links)
A presente tese teve como objetivo fornecer subsídios teóricos e experimentais com vistas à reciclagem da carepa gerada em usinas mini-mills através de briquetes autorredutores para uso em FEA. Para atingir os objetivos vislumbrados, o trabalho foi estruturado em quatro principais tópicos: estudo de caracterização e de redutibilidade da carepa, escolha e caracterização do redutor para uso nos briquetes, elaboração e caracterização da mistura e ensaios de laboratório para avaliação do desempenho dos briquetes autorredutores. Os estudos de caracterização da carepa indicaram que este resíduo é constituído principalmente de wustita e se apresenta estratificada em três camadas: camada externa fina e porosa composta de hematita e magnetita, camada intermediária de wustita densa e camada interna de wustita porosa. A cinética de redução da carepa foi investigada em termobalança no intervalo de temperatura entre 830 e 1200°C com CO puro e mistura 90%CO-10%CO2. A energia de ativação aparente encontrada nesses ensaios variou de 71 a 80 kJ/mol e as observações microscópicas demonstraram que a redução da carepa segue um modelo topoquímico. A escolha do agente redutor para compor o briquete se deu através de ensaios de gaseificação ao CO2 e de autorredução em termobalança com três tipos de material carbonoso. A partir desses ensaios observou-se a seguinte ordem decrescente de reatividade e respectivas energias aparentes de ativação: Carvão Vegetal (Ea = 237 kJ/mol), Carvão Mineral (Ea = 214 kJ/mol) e Coque de Petróleo (Ea = 335 kJ/mol). Em virtude da maior reatividade do Carvão Vegetal frente aos demais, este redutor foi escolhido para uso nos briquetes. A mistura utilizada na confecção dos briquetes autorredutores teve como constituintes principais a carepa, os finos de carvão vegetal e aglomerantes (melaço e cal). Ensaios de caracterização em termobalança com atmosfera oxidante e aquecimento rápido indicaram uma perda de massa de cerca de 40%, referente às etapas de secagem, desvolatilização e autorredução da mistura. Nesses ensaios, observou-se elevadas taxas de perda de massa da mistura e uma notável complexidade dos fenômenos envolvidos, com reações simultâneas de combustão, autorredução e de oxidação do ferro, prevalecendo uma ou outra, dependendo da temperatura e da fração reagida de amostra. Através de procedimentos que buscaram reduzir a complexidade dos fenômenos envolvidos nas condições oxidantes, foi possível estimar que a energia de ativação aparente de autorredução está entre 62 e 69 kJ/mol. Os briquetes produzidos em escala industrial foram submetidos a ensaios isotérmicos e não-isotérmicos de alta temperatura. Tais ensaios buscaram determinar os gradientes térmicos no interior do briquete, a energia de ativação aparente e o desempenho cinético do aglomerado em condições de temperatura que se aproximam da prática industrial. A partir das constatações concernentes às taxas das reações químicas individuais (redução e gaseificação), às medidas do perfil de temperatura no interior dos aglomerados, à energia de ativação estimada para o briquete (93 kJ/mol) e ao modelo de redução encontrado nos ensaios de alta temperatura, acredita-se que tanto a cinética de redução da carepa como a transferência de calor sejam obstáculos limitantes da cinética global dos briquetes em estudo. Finalmente, os resultados de metalização obtidos nos testes de alta temperatura dão indícios da possibilidade de uso destes briquetes em FEA. / This dissertation aimed to provide theoretical and experimental basis for recycling of mill scale generated in mini-mill plants through the use of self-reducing briquettes in EAF. To reach these goals, the work was structured around four main topics: characterization and reducibility study of scale, choice and characterization of the reductant to use in briquettes, elaboration and characterization of the mixture and laboratory tests to performance evaluation of self-reducing briquettes. The characterization studies of mill scale have indicated that this waste is composed mainly of wustite and is stratified into three layers with different morphologies: fine porous external layer composed of hematite and magnetite, intermediate layer of dense wustite and inner layer of porous wustite. The kinetics of scale reduction was investigated in thermobalance in a temperature range from 830 to 1200°C with pure CO and a mixture of 90% CO and 10% CO2. The apparent activation energy obtained in these tests ranged from 71 to 80 kJ/mol and the microscopic observations showed that the mill scale reduction corresponds to a topochemical model. The choice of the reductant for composing the briquette was made through tests of gasification with CO2 and of self-reduction in thermobalance with three different carbonaceous materials. From the results, it was observed the following decreasing reactivity order and the related apparent activation energy: Charcoal (Ea = 237 kJ/mol), Mineral Coal (Ea = 214 kJ/mol) and Petroleum Coke (Ea = 335 kJ/mol). Due to the higher reactivity of Charcoal in relation to the others, this reducer was chosen to be used in the briquettes. The main constituents of the mixture used in the manufacture of self-reducing briquettes were scale, charcoal and binders (melasse and lime). The characterization tests in thermobalance with oxidizing athmosfere and rapid heating indicated a mass loss of about 40%, referring to the stages of drying, devolatilization and self-reduction of the mixture. During these tests, it were observed high rates of mixture loss mass and a remarkable complexity of the phenomena, with simultaneous combustion, self-reduction and iron oxidation reactions, where their importance changes according to temperature and fractional reaction of the sample. Through the procedures that aimed to reduce the complexity of the related phenomena in oxidant conditions, it was possible to estimate that the self-reduction apparent activation energy ranges between 62 to 69 kJ/mol. The briquettes produced in the industrial plant were submitted to isothermal and nonisothermal tests of high temperatures. Such tests aimed to determine the thermal gradients into the briquette, the apparent activation energy and kinetic performance of the agglomerate in temperature conditions similar to the ones used in industrial practice. Based on the findings concerning the individual rates of chemical reactions (reduction and gasification), the measures of the temperature profile inside the briquettes, the activation energy estimated (93 kJ/mol) and the reduction model found in high-temperature tests, it is assumed that both the kinetics of mill scale reduction and heat transfer limit the overall kinetic rates of these briquettes. Finally, the results of metallization obtained in the tests conducted at high temperatures indicate the possibility of using these briquettes into the EAF.
10

Obtenção de pelotas autorredutoras com poeira de aciaria elétrica para uso em fornos elétricos a arco

Ferreira, Felipe Buboltz January 2016 (has links)
O Pó de Aciaria Elétrica (PAE) é um resíduo sólido originado na fabricação de aços em Fornos Elétricos a Arco (FEA), classificado como resíduo perigoso pela ABNT NBR 10004- 2004. Isto porque ele contém metais nocivos ao meio ambiente (como chumbo e cádmio), embora seja constituído, em sua maior parte, pelos elementos ferro, zinco e oxigênio. Devido aos custos onerosos para disposição e por tratar-se de resíduo perigoso, a indústria procura pela possibilidade de retorno ao processo produtivo do aço. Uma das alternativas é a reintrodução na aciaria elétrica através de aglomerados autorredutores como parte da carga do FEA. Neste trabalho, são produzidas misturas autorredutoras contendo PAE e coque de petróleo, apresentando as correspondentes caracterizações químicas e físicas. Através de ensaios termogravimétricos é feita uma avaliação do comportamento destas misturas, mostrando a possibilidade do emprego desta técnica na aferição prática do teor ótimo de coque, em aglomerados. Além disto, foram produzidas pelotas autorredutoras através do uso de um disco laboratorial, sendo as pelotas submetidas a testes físicos e mecânicos, com uso de aglomerantes e também testes de autorredução em fornos mufla e em aparato experimental. Como resultados destes experimentos pode-se concluir que o cimento Portland ARI e a combinação de cal hidratada com cinza de casca de arroz possuem melhor resistência a compressão frente aos outros ligantes utilizados. O grau de metalização obtido para a maior parte das amostras não passou de 35%. A remoção de zinco foi de aproximadamente 85%, para temperatura de 1100 ºC, com 45 minutos e com 10% de coque de petróleo. Isto indica a possibilidade de enriquecimento da nova poeira gerada em zinco. Fato este que agrega valor para tratamento do resíduo em outros processos externos. / The Electric Arc Furnace Dust (EAFD) is a solid waste generated by electric steelmaking, in Electric Arc Furnaces (EAF), being considered a hazardous waste by the Environmental Protection Agency. That is because of its harmful metals, although it is composed, in majority, by elements iron, zinc and oxygen. Due to high costs involved for its disposal and because it is a hazardous waste, industry seek for the possibility of returning the EAFD back to the steelmaking process. One of the alternatives is by reintroduction via electric meltshop through self-reducing agglomerates as part of the furnace burden. In this work, self-reducing mixtures of EAFD and petroleum coke were produced, showing as result corresponding chemical and physical characterizations. Using thermogravimetric tests, an evaluation of the mixtures behavior was carried out, demonstrating the possibility of using this technique in a practical measurement of optimal content of coke, in agglomerates. Furthermore, selfreducing pellets were pelletized using a laboratorial disc, with these agglomerates being tested in physical and mechanical strength essays, with different binders employed and also selfreduction tests in vertical electric furnace and experimental apparatus. As part of the results it could be concluded cement and the combination between hydrated lime and rice husk ash achieved the best results, in compressive strength, comparing to other binders. The metallization degree for almost all samples achieved a maximum of 35%. Zinc removal, for temperatures around 1100 ºC, in an experiment of 45 minutes and using 10% of petroleum coke, was approximately 85%. It indicates the dust to be enriched with zinc. This fact adds value to the waste for treatment in other processes.

Page generated in 0.0896 seconds