• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Revisiting Nitride Semiconductors: Epilayers, p-Type Doping and Nanowires

Kendrick, Chito Edsel January 2008 (has links)
This dissertation investigates the growth of high quality GaN and InN thin films by plasma assisted molecular beam epitaxy (PAMBE). It also explores the growth of self-seeded GaN branching nanowires and p-type doping of InN, two topics of particular interest at present. The growth of high quality III-Nitride semiconductor thin films have been shown to be dependent on the group-III (metal) to nitrogen ratio. A metal-rich growth environment enhances the diffusion of the group-III adatoms through the formation of a group-III adlayer. By using a metal-rich growth environment, determined by growth rate studies using laser reflection interferometry or RHEED analysis of the surface, both GaN and InN films have been grown with a smooth surface morphology. Additionally the smooth surface morphology has beneficial effects on the electrical and optical properties of both materials. However, with the growth using a metal-rich environment, group-III droplets are present on all film surfaces, which can be an issue for device fabrication, as they produce facets in the crystal structure due to enhanced growth rates. MBE growth of GaN nanowires via the vapour liquid solid (VLS) and vapour solid (VS) growth techniques have so far been based on the N-rich growth regime. However, we have shown that the Ga-rich growth regime can be used to grow self-seeded one dimensional and hierarchical GaN nanowires. 7 µm long hierarchical GaN nanowires with at least three branches were grown and shown to have a high crystalline quality. The suggested growth mechanism is a self-seeding VLS process driven by liquid phase epitaxy at the nanoscale, while the branching growth was nucleated due to the Ga-rich growth regime by excess Ga droplets forming on the trunk during growth. The growth of vertical GaN nanowires has also been achieved using the same self-seeding process and the critical parameter seems to be the Ga to N ratio. Also, the growth rate of the Ga-rich grown GaN nanowires can supersede the growth rates reported from N-rich grown GaN nanowires by at least a factor of two. The fabrication of vertical and planar GaN nanowire devices has been demonstrated in this study. Two point and three point contacts were fabricated to the branching GaN nanowires in the planar direction with resistive measurements ranging from 200 - 900 kΩ, similar to chemical vapour deposition and MBE grown GaN nanowires. The nonlinear current-voltage characteristics from the three point contacts may lead to unique nano-devices. The planar nanowires have also shown to have potential as UV detectors. Schottky diodes were fabricated on the vertical nanowires, with values for the barrier heights consistent with bulk diodes. Mg and Zn doping studies of InN were also performed. Both InN:Mg and InN:Zn have strong photoluminescence only at low doping concentrations. However, the InN:Mg films have reduced mobilities with increased Mg content, whereas the mobility determined from the InN:Zn films is independent of Zn. When the InN:Zn film quality was improved by growing under the In-rich growth regime, electrochemical capacitance-voltage results suggest n{type conductivity, and strong photoluminescence was obtained from all of the films with four features seen at 0.719 eV, 0.668 eV, 0.602 eV and 0.547 eV. The features at 0.719 eV and 0.668 eV are possibly due to a near band edge to valence band or shallow acceptor transition, while the 0.547 eV has an activation energy of 60 meV suggesting a deep level acceptor.
2

Introduction des technologies de multiplexage en longueur d'onde dense dans les futures générations de réseaux d'accès optique / Dense wavelength division multiplexing technologies introduction in futures optical access networks generations

Simon, Gaël 01 December 2016 (has links)
Initialement poussées par le marché résidentiel, les évolutions du réseau d’accès optique sont aujourd’hui également stimulées par l’expansion du réseau mobile. Comme le montre le premier chapitre de ce document, l’introduction d’un multiplexage en longueur d’onde dense constitue l’une des solutions privilégiées pour permettre la montée en débit dans les réseaux d’accès optique. Dans cette thèse, l’impact de l’introduction du multiplexage en longueur d’onde dense est étudié sous trois axes :• Une prochaine étape de l’évolution des technologies pour les réseaux d’accès passerait par une hybridation entre d’une part, un multiplexage temporel (hérité des précédentes générations), et d’autre part, un multiplexage en longueur d’onde dense. Cette technologie, appelée NGPON2-TWDM, permet aujourd’hui d’envisager des débits de 40Gb/s à 80Gb/s grâce à 4 ou 8 canaux. Les difficultés liées à la stabilité de la longueur d’onde lors de l’émission de données en mode paquet dans le sens montant du lien, ainsi que les solutions associées, sont étudiées dans le second chapitre.• L’importance du marché que représente le réseau d’accès optique (aussi bien pour les clients résidentiels que pour les réseaux mobiles), induit la nécessité pour les différentes générations de technologies de coexister au sein d’une même infrastructure. Du fait des fortes puissances optiques en jeu et des plages spectrales allouées à chaque technologie, cette coexistence peut induire des interactions entre technologies par émission Raman stimulée, dont le principe et les impacts sont décrits dans le troisième chapitre.• Enfin, la quatrième partie de ce document est dédiée à l’étude des limites et potentialités de la technologie self-seeded pour le multiplexage en longueur d’onde dense en bande O, capable de stabiliser automatiquement et passivement la longueur d’onde d’émission de chacun des émetteurs du système. / Initially led by the residential market, today’s optical access network evolutions are stimulated by mobile network expansion. As shown in the first chapter of this document, dense wavelength division multiplexing is one of the favorite solutions in order to increase optical access networks throughput. In this thesis, we propose a study of dense wavelength division multiplexing introduction according to three main topics :• Service providers and equipment suppliers have decided that the next step in residential market evolution will consist in a hybridization between, on one hand, a legacy time division multiplexing, and on the other hand, a dense wavelength division multiplexing. Named NG-PON2, this technology allows today 40Gb/s to 80Gb/s thanks to 4 to 8 channel pairs. Wavelength stability of the upstream emitter under burst mode operation, and related solutions, are studied in the second chapter.• Market importance (for both residential market and mobile networks) requires the different technologies generations to coexist on the same infrastructure. Due to the high optical power and the wavelength spans allocated to each technology, this coexistence can lead to technologies interactions by stimulated Raman scattering, as described in the third chapter.• Finally, the fourth part of this document describes the limits and potentialities of the self-seeded emitter technology for O-band dense wavelength division multiplexing, able to automatically and passively self-stabilize the wavelength of each emitter.

Page generated in 0.0413 seconds