• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 370
  • 206
  • 76
  • 53
  • 24
  • 20
  • 20
  • 18
  • 18
  • 16
  • 8
  • 7
  • 7
  • 6
  • 6
  • Tagged with
  • 898
  • 898
  • 266
  • 200
  • 186
  • 159
  • 146
  • 125
  • 112
  • 109
  • 105
  • 105
  • 104
  • 102
  • 101
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessing the potential value of semantic Web technologies in support of military operations

Hagenston, Marty G., Chance, Samuel G. 09 1900 (has links)
Approved for public release; distribution is unlimited / Recent military operations have redefined the way modern warfare is waged. In a deliberate effort to achieve and retain information dominance and decision superiority, many innovative technologies have emerged to assist the human war fighter. Unquestionably, these technologies have generated resounding successes on the battlefield, the likes of which have never been seen. With all the success, however, there are still areas for improvement as the potential exists for further reducing already short sensor-to-shooter times. The current World Wide Web (WWW) is largely a human-centric information space where humans exchange and interpret data ([2] Berners-Lee, 1, 1999). The Semantic Web (SWEB) is not a separate Web, but an extension of the current one in which content is given well-defined meaning, better enabling computers and people to work in cooperation (Berners-Lee et al). The result is the availability of the various backgrounds, experiences, and abilities of the contributing communities through the self-describing content populating the SWEB ([2] Berners-Lee, 1999). This thesis assesses current SWEB technologies that promise to make disparate data sources machine interpretable for use in the construction of actionable knowledge with the intent of further reducing sensor-to-shooter times. The adoption of the SWEB will quietly be realized and soon machines will prove to be of greater value to war fighting. When machines are able to interpret and process content before human interaction and analysis begins, their value will be further realized. This off-loading, or delegation, will produce faster sensor-to-shooter times and assist in achieving the speed required to achieve victory on any battlefield. / Lieutenant, United States Navy / Major, United States Army
2

The semantic extensions to Wikipedia

Krishnan, Subha. January 1900 (has links)
Thesis (M.A.)--California State University Channel Islands, 2007. / Submitted in partial fulfillment of the requirements for the degree of Masters Of Science in Computer Science. Title from PDF t.p. (viewed October 22, 2009).
3

Assessing the potential value of semantic Web technologies in support of military operations /

Chance, Samuel G. Hagenston, Marty G. January 2003 (has links) (PDF)
Thesis (M.S. in Information Technology Management)--Naval Postgraduate School, September 2003. / Thesis advisor(s): Alexander Bordetsky, Douglas P. Homer. Includes bibliographical references (p. 255-262). Also available online.
4

Integrating relational databases with the Semantic Web

Sequeda, Juan Federico 04 September 2015 (has links)
An early vision in Computer Science was to create intelligent systems ca- pable of reasoning on large amounts of data. Independent results in the areas of Description Logic and Relational Databases have advanced us towards this vision. Description Logic research has advanced the understanding of the tradeoff between the computational complexity of reasoning and the expressiveness of logic languages, and now underpins the Semantic Web. The Semantic Web comprises a graph data model (RDF), an ontology language for knowledge representation and reasoning (OWL) and a graph query language (SPARQL). Database research has advanced the theory and practice of management of data, embodying features such as views and recursion which are capable of representing reasoning. Despite the independent advances, the interface between Relational Databases and Semantic Web is poorly understood. This dissertation revisits this vision with respect to current technology and addresses the following question: How and to what extent can Relational Databases be integrated with the Semantic Web? The thesis is that much of the existing Relational Database infrastructure can be reused to support the Semantic Web. Two problems are studied. Can a Relational Database be automatically virtualized as a Semantic Web data source? This paradigm comprises a single Relational Database. The first contribution is an automatic direct mapping from a Relational Database schema and data to RDF and OWL. The second contribution is a method capable of evalu- ating SPARQL queries against the Relational Database, per the direct mapping, by exploiting two existing relational query optimizations. These contributions are embodied in a system called Ultrawrap. Empirical analysis consistently yield that SPARQL query execution performance on Ultrawrap is comparable to that of SQL queries written directly for the relational representation of the data. Such results have not been previously achieved. Can a Relational Database be mapped to existing Semantic Web ontologies and act as a reasoner? This paradigm comprises an OWL ontology including inheritance and transitivity, a Relational Database and mappings between the two. A third contribution is a method for Relational Databases to support inheritance and transitivity by compiling the ontology as mappings, implementing the mappings as SQL views, using SQL recursion and optimizing by materializing a subset of views. This contribution is implemented in an extension of Ultrawrap. Empirical analysis reveals that Relational Databases are able to effectively act as reasoners. / text
5

Keyword search on huge RDF graph

Yee, Ka-chi., 余家智. January 2010 (has links)
published_or_final_version / Computer Science / Doctoral / Doctor of Philosophy
6

Enhancing workflow with a semantic description of scientific intent

Pignotti, Edoardo January 2010 (has links)
In recent years there has been a proliferation of scientific resources available through the Internet including, for example, datasets and computational modelling services.  Scientists are becoming increasingly dependent upon these resources, which are changing the way they conduct their research activities with increasing emphasis on conducting ‘in silico’ experiments as a way to test hypotheses.  Scientific workflow technologies provide researchers with a flexible problem-solving environment by facilitating the creation and execution of experiments from a pool of available services.  This thesis investigates the use of workflow tools enhanced with semantics to facilitate the design, execution, analysis and interpretation of workflow experiments and exploratory studies.  It is argued that in order to better characterise such experiments we need to go beyond low-level service composition and execution details by capturing higher-level descriptions of the scientific process.  Current workflow technologies do not incorporate any representation of such experimental constraints and goals, which is referred to in this thesis as scientist’s intent.  This thesis proposes an abstract model of scientific intent based on the concept of an Agent in the Open Provenance Model (OPM) specification.  To realise this model a framework based upon a number of Semantic Web technologies has been developed, including the OWL ontology language and the Semantic Web Rule Language (SWRL).  Through the use of social simulation case studies the thesis illustrates the benefits of using this framework in terms of workflow monitoring, workflow provenance and annotation of experimental results.
7

HealthCyberMap : mapping the health cyberspace using hypermedia GIS and clinical codes

Boulos, Maged Nabih Kamel January 2002 (has links)
No description available.
8

Discrete event calculus using Semantic Web technologies

Mepham, Will January 2010 (has links)
This thesis provides a detailed description of the research undertaken into the creation of a framework that uses Semantic Web languages to implement a recently developed commonsense reasoning formalism called Discrete Event Calculus (DEC). It aims to show to what extent DEC reasoning can be applied to Semantic Web data, using the Semantic Web standards and supporting development environments available for the purpose in 2008, when the research programme commenced. The research aims to provide an accurate and reusable DEC ontology using the languages defined in Semantic Web Standards. To this end, an ontology describing the DEC entities and axioms is defined in OWL and SWRL; this represents the core elements of the DEC formalism, namely its set of logical types and predicates and the relations between them. The ontology is used together with a proof-of-concept DEC resolver software that applies the ontology to an existing rules engine, so that new inferences can be created from a DEC domain. The design and implementation of the combined ontology and software framework are described in detail. The methodological issues involved in reconciling a software model with an ontology model are also discussed and the capabilities of the framework are validated by a series of tests modelled on established AI benchmark scenarios that can be resolved correctly using DEC. The results confirm that the framework will create the appropriate inferences with reference to the benchmark problems, though they also highlight some of current limitations in the framework, notably to do with how it represents changing fluent values. A detailed sample domain ontology is provided, which is based on the domain of turn-based multiplayer online games; this illustrates how the DEC ontology defined in this research could be extended for use with other domains. A further extension of the DEC ontology is proposed, which enables the resolver to represent real-world time values independently of the timepoints defined as part of the formalism. Finally, the strengths and extant boundaries of the chosen approach are discussed and suggestions are provided for improvements that could form the basis of future work.
9

Semantic based support for visualisation in complex collaborative planning environments

Lino, Natasha Correia Queiroz January 2007 (has links)
Visualisation in intelligent planning systems [Ghallab et al., 2004] is a subject that has not been given much attention by researchers. Among the existing planning systems, some well known planners do not propose a solution for visualisation at all, while others only consider a single approach when this solution sometimes is not appropriate for every situation. Thus, users cannot make the most of planning systems because they do not have appropriate support for interaction with them. This problem is more enhanced when considering mixed-initiative planning systems, where agents that are collaborating in the process have different backgrounds, are playing different roles in the process, have different capabilities and responsibilities, or are using different devices to interact and collaborate in the process. To address this problem, we propose a general framework for visualisation in planning systems that will give support for a more appropriate visualisation mechanism. This framework is divided into two main parts: a knowledge representation aspect and a reasoning mechanism for multi-modality visualisation. The knowledge representation uses the concept of ontology to organise and model complex domain problems. The reasoning mechanism gives support to reasoning about the visualisation problem based on the knowledge bases available for a realistic collaborative planning environment, including agent preferences, device features, planning information, visualisation modalities, etc. The main result of the reasoning mechanism is an appropriate visualisation modality for each specific situation, which provides a better interaction among agents (software and human) in a collaborative planning environment. The main contributions of this approach are: (1) it is a general and extensible framework for the problem of visualisation in planning systems, which enables the modelling of the domain from an information visualisation perspective; (2) it allows a tailored approach for visualisation of information in an AI collaborative planning environment; (3) its models can be used separately in other problems and domains; (4) it is based on real standards that enable easy communication and interoperability with other systems and services; and (5) it has a broad potential for its application on the Semantic Web.
10

Suche im Semantic Web Erweiterung des VRP um eine intuitive und RQL-basierte Anfrageschnittstelle

Wleklinski, Fabian Unknown Date (has links)
Univ., Diplomarbeit, 2003--Frankfurt (Main) / Zsfassung in dt. und engl. Sprache

Page generated in 0.0716 seconds