• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Processamento e propriedades de tiras metálicas fundidas da liga Al-Si A413 produzidas por reolaminação /

Oliveira Neto, Pedro Barbosa de. January 2019 (has links)
Orientador: Antonio de Pádua Lima Filho / Resumo: A liga Al-Si A413 foi utilizada para fabricação de tiras metálicas fundidas por cilindro único e por cilindro duplo, aqui chamado processo de reolaminação. Esta liga não é adequada para obtenção de tiras metálicas por laminação convencional devido às partículas frágeis de Si. Por outro lado, a reolaminação é um processo viável para obter tiras metálicas dessa liga. Neste trabalho, a liga Al-Si A413 foi fundida e vazada com diferentes temperaturas em uma calha metálica inclinada a 20º numa vazão de 14 cm³/s para se obter um material semissólido que alimenta um bocal cerâmico (150 cm³) junto ao cilindro inferior. Na reolaminação, o espaçamento entre os cilindros foi de 1,5 mm. Os cilindros na cadeira de laminação são feitos de aço ao carbono comum e têm aproximadamente 105 mm de diâmetro e 100 mm de largura. A região coquilhada/colunar formada no cilindro inferior arrasta a lama metálica a uma velocidade de 0,2 m/s para ser processada tanto por cilindro único como por reolaminação. Para ambos os processos as tiras metálicas fundidas têm uma espessura de 2 mm, aproximadamente. Na saída da cadeira de laminação, as tiras são resfriadas até a temperatura ambiente por chuveiros de água. O equipamento utilizado para a fabricação das tiras metálicas, chamado de “Strip Caster”, passou por inovações durante este trabalho de mestrado: molas de alívio de pressão foram instaladas no cilindro superior e o cilindro inferior foi substituído por um outro cilindro com refrigeração interna. O “S... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The Al-Si A413 alloy was used in order to produce metallic strips with the single roll and twin roll processes, this last one is known as rheolamination. This alloy is not suitable to obtain metallic strips with the conventional lamination due to the brittle particles of silicon. On the other hand, the rheolamination is a suitable process to obtain metallic strips of this alloy. In this work, Al-Si A413 alloy was melted and poured at 680 ºC on a cooling slope at 20º with a flow rate of 14 cm³/s in order to obtain a semisolid material feeding the ceramic nozzle (150 cm³) at the lower roll. The two rolls of the roll stand are separated with a gap of approximately 1.5 mm, have approximately 105 mm in diameter and are made of carbon steel. The chill/columnar layer formed at the lower roll drags the metallic slurry at a rate of 0.2 m/s to be processed by single roll or twin-roll. Both processes obatin a metallic cast strip with a thickness of 2 mm, approximately. At the exit of the stand roll, the strips are cooled to the room temperature with water showers. The equipment used to produce metallic strips, called “Strip Caster”, suffered some inovations during this work: springs was attached to the upper roll in order to reduce the lamination pressure and the lower roll was substituted with an other roll with internal cooling. The Strip Caster was instrumented with two load cell in order to measure the forming forces and with thermocouples to measure the temperatures during the fabr... (Complete abstract click electronic access below) / Mestre
2

Semi-Solid Slurry Formation Via Liquid Metal Mixing

Findon, Matthew M. 21 July 2003 (has links)
"New, economical semi-solid metal (SSM) processes rely on forced convection during solidification to influence non-dendritic growth. The fundamental mechanisms that produce SSM microstructures in the presence of forced convection (due to fluid flow) are not fully understood. The objective of this work is to elucidate these mechanisms through the use of a new semi-solid slurry-making technique. Employing an apparatus developed at WPI, two alloy melts are mixed within a static reactor that induces convection and rapid cooling. Experiments carried out with this apparatus, named the “Continuous Rheoconversion Process” (CRP), result in globular semi-solid microstructures throughout a wide range of processing conditions. These conditions include the superheat in the melts before mixing, cooling rate of the slurry through the SSM range, and the presence or absence of inoculants in the melts. The results comprise repeatable sets of semi-solid microstructures having fine particle size and shape factors approaching unity. Even in the absence of melt inoculants, uniform distributions of α-Al particle sizes of about 60µm are attainable. Entrapped liquid is not present in the majority of the samples obtained with the CRP, and irregular particles that form in the process are of a limited distribution. Variation of slurry analysis methods indicates that these structures can be obtained consistently for both thixocasting and rheocasting applications. The design of the mixing reactor leads to turbulent fluid flow just as solidification commences. The results suggest that the following factors must be considered in identifying the mechanisms operating under the above conditions: copious nucleation of the primary phase; dispersion of nuclei throughout the bulk liquid; and inhibited remelting of nuclei due to temperature uniformity. In the CRP, these factors consistently lead to suppression of dendritic growth, significant grain refinement, and globular slurries. The exact fundamental mechanism leading to this effect is yet to be uncovered; however it is clear that temperature gradients ahead of the liquid are such that a cellular, non-dendritic morphology is the most stable growth form. Through further exploration of the process and identification of the operating mechanisms, future development of economical, continuous rheocasting methods will be facilitated."
3

Comportamento da liga de alumínio A356-T6 fundida e tixoextrudada sob fadiga isotérmica e termomecânica / Casting and tixoextruded A356-T6 aluminum alloy behavior under isothermal and thermomechanical fatigue

Silva, Valdinei Ferreira da 31 August 2004 (has links)
Gradientes térmicos induzidos no interior de componentes sujeitos a variações de temperatura durante o período de funcionamento podem provocar a ocorrência de tensões e deformações internas. A repetição destes ciclos térmicos pode causar a nucleação e a propagação de trincas por um processo denominado fadiga termomecânica. Este trabalho apresenta um estudo sobre o comportamento da liga de alumínio A356-T6, processada nas condições fundida e tixoextrudada, sob fadiga isotérmica e termomecânica. Foram realizados ensaios de fadiga de baixo ciclo isotérmica para as temperaturas de 120 e 280°C, e ensaios de fadiga termomecânica em-fase e fora-de-fase para a faixa de temperatura de 120 a 280°C. O material tixoextrudado apresentou melhor desempenho em fadiga nas condições isotérmica e anisotérmica (termomecânica) devido a uma microestrutura globular com menor nível de porosidade. / Thermal gradients induced in components during service under temperature changes can cause internal stresses and strains. This cyclic thermal behavior can cause crack nucleation and propagation under a process denominated thermomechanical fatigue. Permanent mold casting and tixoextruded A356-T6 aluminum alloy behavior under isothermal and thermomechanical fatigue was study in this work. Isothermal low cycle fatigue tests were performed in temperatures of 120 and 280°C. In-phase and out-of-phase thermomechanical fatigue tests were carried out in temperature range from 120 to 280°C. The tixoextruded material presented better isothermal and thermomechanical fatigue performance due to a globular microstructure and lower porosity level.
4

Semisolid Die Casting of Wrought A6061 Aluminium Alloy

Kini, Anoop Raghunath January 2013 (has links) (PDF)
The mechanical properties achieved with high performance wrought aluminium alloys are superior to cast aluminum alloys. To obtain an intricate shaped component, wrought alloys are commonly subjected to forging followed by subsequent machining operation in the automobile industry. As machining of such high strength wrought aluminium alloys adds to cost, productivity gets affected. Shortening the process by near net shaped casting would tremendously enhance productivity. However, casting of such alloys frequently encounter hot tear defect. Therefore, circumventing hot tear to successfully die cast near net shaped wrought alloy components is industrially relevant. A recent advanced casting process, namely ‘Semisolid Die casting’, is proposed as a likely solution. Hot tearing originates due to lack of liquid flow in the inter-dendritic region. To reduce hot tear susceptibility, fine and non-dendritic grain structure is targeted, amenable for processing by semisolid route. For semisolid processing an adequate freezing range for processing is required. Accordingly A6061 wrought alloy whose composition is tuned with higher silicon and magnesium content within the grade limits, is chosen for the study. With the objective of obtaining fine and non-dendritic microstructured billets, electromagnetic stirring (EMS) and cooling slope (CS) methods are employed. On conducting a parametric study with EMS, a finest possible primary α-Al grain size of about 70 μm is obtained at low stirring time at stirring current levels of 175 A and 350 A, with the addition of grain refiner. CS, on the other hand, rendered a grain of 60 μm at a slope length of 300 mm at a slope angle of 45° with grain refiner addition. Of the two methods, CS billets are chosen for subsequent induction heating. A 3-step induction heating cycle has been devised to attain a temperature of 641°C in the billet on the basis of factors including coherency point, viscosity of the slurry and solid fraction sensitivity with temperature. The billet microstructure is found to be homogenous throughout after quenching in water. The characterization of phase along primary α-Al grain boundary and its composition analysis is done by SEM and EPMA respectively, after billet casting as well as induction heating. In addition, the bulk hardness is determined in BHN. The induction heated billets are semisolid die cast to produce an engine connecting rod used in automobiles. The microstructure is characterized at various locations, and is found to consist of smooth α-Al grains in a background matrix of fine grains formed due to secondary solidification. The component hardness is found to be 66 BHN comparable with A6061 alloy under T4 heat treated condition. X-ray radiography does not confirm presence of surface hot tear, which is the normal defect associated with casting of wrought aluminium alloys. No defects are observed along the constant cross-sectional area of the connecting rod, suggesting that the processing could be suitable for semisolid extrusion.
5

Study Of Solidification And Microstructure Produced By Cooling Slope Method

Kund, Nirmala Kumar 09 1900 (has links) (PDF)
In most casting applications, dendritic microstructure morphology is not desired because it leads to poor mechanical properties. Forced convection causing sufficient shearing in the mushy zone of the partially solidified melt is one of the means to suppress this dendritic growth. The dendrites formed at the solid-liquid interface are detached and carried away due to strong fluid flow to form slurry. This slurry, consisting of rosette or globular particles, provides less resistance to flow even at a high solid fraction and can easily fill the die-cavity. The stated principle is the basis of a new manufacturing technology called “semi-solid forming” (SSF), in which metal alloys are cast in the semi-solid state. This technique has numerous advantages over other existing commercial casting processes, such as reduction of macrosegregation, reduction of porosity and low forming efforts. Among all currently available methods available for large scale production of semisolid slurry, the cooling slope is considered to be a simple but effective method because of its simple design and easy control of process parameters, low equipment and running costs, high production efficiency and reduced inhomogeneity. With this perspective, the primary objective of the present research is to investigate, both experimentally and numerically, convective heat transfer and solidification on a cooling slope, in addition to the study of final microstructure of the cast billets. Some key process parameters are identified, namely pouring temperature, slope angle, slope length, and slope cooling rate. A systematic scaling analysis is performed in order to understand the relative importance of the parameters in influencing the final properties of the slurry and microstructure after solidification. A major part of the present work deals with the development of an experimental set up with careful consideration of the range of process parameters involved by treating the cooling slope as a heat exchanger. Subsequently, a comprehensive numerical model is developed to predict the flow, heat transfer, species concentration solid fraction distribution of aluminum alloy melt while flowing down the cooling slope. The model uses a variable viscosity relation for slurry. The metal-air interface at the top during the melt flow is tracked using a volume of fluid (VOF) method. Solidification is modeled using an enthalpy based approach and a volume averaged technique. The mushy region is modeled as a multi-layered porous medium consisting of fixed columnar dendrites and mobile equiaxed or fragmented grains. In addition, the solidification model also incorporates a fragmentation criterion and solid phase movement. The effects of key process parameters on flow behavior involving velocity distribution, temperature distribution, solid fractions at the slope exit, and macrosegregation, are studied numerically and experimentally for aluminium alloy A356. The resulting microstructures of the cast billets obtained from the experiments are studied and characterized. Finally the experimental results are linked to the model predictions for establishing the relations involving interdependence of the stated key process parameters in determining the quality of the final cast products. This study is aimed towards providing the necessary guidelines for designing a cooling slope and optimizing the process parameters for desirable quality of the solidified product.
6

Comportamento da liga de alumínio A356-T6 fundida e tixoextrudada sob fadiga isotérmica e termomecânica / Casting and tixoextruded A356-T6 aluminum alloy behavior under isothermal and thermomechanical fatigue

Valdinei Ferreira da Silva 31 August 2004 (has links)
Gradientes térmicos induzidos no interior de componentes sujeitos a variações de temperatura durante o período de funcionamento podem provocar a ocorrência de tensões e deformações internas. A repetição destes ciclos térmicos pode causar a nucleação e a propagação de trincas por um processo denominado fadiga termomecânica. Este trabalho apresenta um estudo sobre o comportamento da liga de alumínio A356-T6, processada nas condições fundida e tixoextrudada, sob fadiga isotérmica e termomecânica. Foram realizados ensaios de fadiga de baixo ciclo isotérmica para as temperaturas de 120 e 280°C, e ensaios de fadiga termomecânica em-fase e fora-de-fase para a faixa de temperatura de 120 a 280°C. O material tixoextrudado apresentou melhor desempenho em fadiga nas condições isotérmica e anisotérmica (termomecânica) devido a uma microestrutura globular com menor nível de porosidade. / Thermal gradients induced in components during service under temperature changes can cause internal stresses and strains. This cyclic thermal behavior can cause crack nucleation and propagation under a process denominated thermomechanical fatigue. Permanent mold casting and tixoextruded A356-T6 aluminum alloy behavior under isothermal and thermomechanical fatigue was study in this work. Isothermal low cycle fatigue tests were performed in temperatures of 120 and 280°C. In-phase and out-of-phase thermomechanical fatigue tests were carried out in temperature range from 120 to 280°C. The tixoextruded material presented better isothermal and thermomechanical fatigue performance due to a globular microstructure and lower porosity level.

Page generated in 0.0727 seconds