• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Produção de biogás a partir da codigestão da cama de frango e água residuária de abatedouro de suínos / Optimization of biogas production from co-digestion of poultry litter and swine wastewater

Venzon, Simoni Spohr 17 February 2017 (has links)
Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2017-09-15T19:02:10Z No. of bitstreams: 1 Simoni_Venzon2017.pdf: 2968978 bytes, checksum: 8d86880483b828aa9362b011294b38c9 (MD5) / Made available in DSpace on 2017-09-15T19:02:10Z (GMT). No. of bitstreams: 1 Simoni_Venzon2017.pdf: 2968978 bytes, checksum: 8d86880483b828aa9362b011294b38c9 (MD5) Previous issue date: 2017-02-17 / Along with the expansion of poultry activity, expressive amounts of poultry litter are generated every year, reaching 100 million tons. An alternative for the disposal of this residue is its use as a substrate for anaerobic biodigestion, which converts organic matter into biogas and digestate, with high nutritive value that can be used as biofertilizer. Because it is a solid residue with low humidity, to facilitate digestion, currently, large amounts of potable water are used. In this study, potable water was replaced by another liquid residue, swine wastewater, highlighting a co-digestion. Co-digestion of the poultry litter with the swine effluent was performed in a horizontal tubular anaerobic reactor with semi-continuous feed, operated at room temperature. By means of the application of a central rotational compound design, the biogas production was studied according to the operational parameters: volatile solids fed, in concentrations ranging from 2 to 8%, and hydraulic retention time, in intervals of 2.95 to 17.05 days. The effluent with low concentrations of nitrogen, total solids and alkalinity together with the reduced concentrations of Ca, K, Zn and absence of Cu can be used in co-digestion with the chicken litter, imparting humidity and neutralizing the toxicity of inhibitory compounds. Biogas production in all biodigesters started on the first day of operation and stabilized soon after the adaptation period (100 h), due to the good quality of the inoculum that had previously been acclimatized. The biogas production rate ranged from 73.69 to 295.26 dm3.kgSVal-1. An increase in biogas production rate can be achieved with high periods of hydraulic retention and with a lower concentration of volatile solids fed to the digester. The highest biogas production rate, with 48% methane, was obtained in a reactor fed with 2.87% volatile solids and hydraulic retention time of 15 days, yielding an energy potential of 0.034 MJ.day-1. The obtained statistical model was able to explain in 90% the experimental data and can be used in the prediction of the biogas production from co-digestion with poultry litter and swine wastewater. Even with the high alkalinity from the poultry litter, it was not enough to buffer the accumulation of volatile acids, occurring decrease in pH. In all reactors the carbon: nitrogen ratio in the substrates remained around 32.04±0.01 and there was no increase in pH, indicating no inhibition by ammonia. In all the reactors there was reduction of organic and nitrogen loads. Even with high organic load and in the presence of plant and soil nutrients, the digestates can be used as fertilizer with economic and ecological benefits. / Junto à expansão da atividade avícola, expressivas quantidades de cama de frango são geradas todo ano, podendo chegar a 100 milhões de toneladas. Uma alternativa para a disposição deste resíduo está na sua utilização como substrato para biodigestão anaeróbia, que converte a matéria orgânica em biogás e digestato, com alto valor nutritivo e que pode ser utilizado como biofertilizante. Por ser um resíduo sólido com pouca umidade, para favorecer a digestão, atualmente são utilizadas grandes quantidades de água, a qual foi aqui substituída por outro resíduo líquido: água residuária de abatedouro e indústria de beneficiamento de suínos, evidenciando uma codigestão. A codigestão da cama de frango com efluente suíno foi realizada em um reator anaeróbio tubular horizontal com alimentação semi-contínua, operado à temperatura ambiente. Por meio da aplicação de um DCCR, a produção de biogás foi estudada em função das condições operacionais: sólidos voláteis adicionados, em concentrações que variaram de 2 a 8%, e tempo de retenção hidráulica, em intervalos de 2,95 a 17,05 dias. O efluente com baixas concentrações de nitrogênio, sólidos totais e alcalinidade, junto com as reduzidas concentrações de Ca, K, Zn e ausência de Cu, pode ser utilizado em codigestão com a cama de frango, conferindo umidade e a neutralização da toxicidade de compostos inibitórios. A produção de biogás em todos os biodigestores começou ainda no primeiro dia de operação e estabilizou logo após o período de adaptação (100 h), devido à boa qualidade do inóculo, que havia sido previamente aclimatado. A taxa de produção de biogás variou de 73,69 a 295,26 dm3.kgSVal-1. Um aumento na taxa de produção de biogás pode ser conseguido com elevados tempos de retenção hidráulica e com uma menor concentração de sólidos voláteis adicionados ao biodigestor. A maior taxa de produção de biogás, com 48% de metano, foi obtida em um reator alimentado com 2,87% de sólidos voláteis e tempo de retenção hidráulica de 15 dias, rendendo um potencial energético de 0,034 MJ.dia-1. O modelo estatístico obtido conseguiu explicar em 90% os dados experimentais e pode ser utilizado na previsão da produção de biogás a partir da codigestão com cama de frango e água residuária de abatedouro e indústria de beneficiamento de suínos. Mesmo com a alta alcalinidade proveniente do resíduo cama de frango, esta não foi suficiente para tamponar o acúmulo de ácidos voláteis, ocorrendo a queda do pH. Em todos os reatores, a razão C:N nos substratos permaneceu em torno de 32,04±0,01 e não houve aumento do pH, indicando que não houve inibição por amônia. Em todos os reatores houve redução da carga orgânica e de nitrogênio. Ainda com alta carga orgânica e na presença de nutrientes das plantas e do solo, como S, Ca, Mg e pequenas quantidades de metais pesados, os digestatos podem ser utilizados como fertilizante com benefícios econômicos e ecológicos.
2

Automation of a reactor for enzymatic hydrolysis of sugar cane bagasse : Computational intelligencebased adaptive control

Furlong, Vitor Badiale 20 March 2015 (has links)
Submitted by Luciana Sebin (lusebin@ufscar.br) on 2016-09-21T13:52:44Z No. of bitstreams: 1 DissVBF.pdf: 4418595 bytes, checksum: aaae3efb173c8760a1039251a31ea973 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-23T18:23:48Z (GMT) No. of bitstreams: 1 DissVBF.pdf: 4418595 bytes, checksum: aaae3efb173c8760a1039251a31ea973 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-23T18:24:01Z (GMT) No. of bitstreams: 1 DissVBF.pdf: 4418595 bytes, checksum: aaae3efb173c8760a1039251a31ea973 (MD5) / Made available in DSpace on 2016-09-23T18:24:10Z (GMT). No. of bitstreams: 1 DissVBF.pdf: 4418595 bytes, checksum: aaae3efb173c8760a1039251a31ea973 (MD5) Previous issue date: 2015-03-20 / Não recebi financiamento / The continuous demand growth for liquid fuels, alongside with the decrease of fossil oil reserves, unavoidable in the long term, induces investigations for new energy sources. A possible alternative is the use of bioethanol, produced by renewable resources such as sugarcane bagasse. Two thirds of the cultivated sugarcane biomass are sugarcane bagasse and leaves, not fermentable when the current, first-generation (1G) process is used. A great interest has been given to techniques capable of utilizing the carbohydrates from this material. Among them, production of second generation (2G) ethanol is a possible alternative. 2G ethanol requires two additional operations: a pretreatment and a hydrolysis stage. Regarding the hydrolysis, the dominant technical solution has been based on the use of enzymatic complexes to hydrolyze the lignocellulosic substrate. To ensure the feasibility of the process, a high final concentration of glucose after the enzymatic hydrolysis is desirable. To achieve this objective, a high solid consistency in the reactor is necessary. However, a high load of solids generates a series of operational difficulties within the reactor. This is a crucial bottleneck of the 2G process. A possible solution is using a fed-batch process, with feeding profiles of enzymes and substrate that enhance in the process yield and productivity. The main objective of this work was to implement and test a system to infer online concentrations of fermentable carbohydrates in the reactive system, and to optimize the feeding strategy of substrate and/or enzymatic complex, according to a model-based control strategy. Batch and fed-batch experiments were conducted in order to test the adherence of four simplified kinetic models. The model with best adherence to the experimental data (a modified Michaelis-Mentem model with inhibition by the product) was used to train an Artificial Neural Network (ANN) as a softsensor to predict glucose concentrations. Further, this ANN may be used in a closedloop control strategy. A feeding profile optimizer was implemented, based on the optimal control approach. The ANN was capable of inferring the product concentration from the available data with good adherence (Determination Coefficient of 0.972). The optimization algorithm generated profiles that increased a process performance index while maintaining operational levels within the reactor, reaching glucose concentrations close to those utilized in current first generation technology a (ranging between 156.0 g.L⁻¹ and 168.3 g.L⁻¹). However rough estimates for scaling up the reactor to industrial dimensions indicate that this conventional reactor design must be replaced by a two-stage reactor, to minimize the volume of liquid to be stirred. / A crescente demanda por combustíveis líquidos, bem como a diminuição das reservas de petróleo, inevitáveis a longo prazo, induzem pesquisas por novas fontes de energia. Uma possível solução é o uso do bioetanol, produzido de resíduos, como o bagaço de cana-deaçúcar. Dois terços da biomassa cultivada são bagaço e folhas. Estas frações não são fermentescíveis quando se usa a tecnologia de primeira geração atual (1G). Um grande interesse vem sendo prestado a técnicas capazes de utilizar os carboidratos deste material. Dentre elas, a produção de etanol de segunda geração (2G) é uma possível alternativa. Etanol 2G requer duas operações adicionais: etapas de pré-tratamento e hidrólise. Considerando a hidrólise, a técnica dominante tem sido a utilização de complexos enzimáticos para hidrolisar o substrato lignocelulósico. Para assegurar a viabilidade do processo, uma alta concentração final de glicose é necessária ao final do processo. Para atingir esse objetivo, uma alta concentração de sólidos no reator é necessária. No entanto, uma carga grande de sólidos gera uma série de dificuldades operacionais para o processo. Este é um gargalo crucial do processo 2G. Uma possível solução é utilizar um processo de batelada alimentada, com perfis de alimentação de enzima e substrato para aumentar produtividade e rendimento. O principal objetivo deste trabalho é implementar e testar um sistema para inferir concentração de carboidratos fermentescíveis automaticamente e otimizar a política de substrato e/ou enzima em tempo real, de acordo com uma estratégia de controle baseada em modelo cinético. Experimentos de batelada e batelada alimentada foram realizados a fim de testar a aderência de 4 modelos cinéticos simplificados. O modelo com melhor aderência aos dados experimentais (um modelo de Michaelis-Mentem modificado com inibição por produto) foi utilizado para gerar dados a fim de treinar uma rede neural artificial para predizer concentrações de glicose automaticamente. Em estudos futuros, esta rede pode ser utilizada para compor o fechamento da malha de controle. Um otimizador de perfil de alimentação foi implementado, este foi baseado em uma abordagem de controle ótimo. A rede neural foi capaz de predizer a concentração de produto com os dados disponíveis de maneira satisfatória (Coeficiente de Determinação de 0.972). O algoritmo de otimização gerou perfis que aumentaram a performance do processo enquanto manteve as condições da hidrólise dentro de níveis operacionais, e gerou concentrações de glicose próximas as obtidas pelo caldo de cana-de-açúcar da primeira geração (valores entre 156.0 g.L ¹ e 168.3 g.L ¹). No entanto, estimativas iniciais de ⁻ ⁻ aumento de escala do processo demonstraram que para atingir dimensões industriais o projeto do reator utilizado deve ser analisado, substituindo o mesmo por um processo em dois estágios para diminuir o volume do reator e energia para agitação.

Page generated in 0.0721 seconds