Spelling suggestions: "subject:"semiglobal solvability"" "subject:"isquemiaglobal solvability""
1 |
Resolubilidade semiglobal e global para uma classe de campos vetoriais complexos em variedades diferenciáveis / Semi-global and global solvability for a class of complex vector fields in differentiable manifoldsVictor, Bruno de Lessa 03 March 2017 (has links)
Neste trabalho estudamos a resolubilidade suave de campos vetoriais complexos suaves da forma L = L1 + iL2, em uma variedade M, com as seguintes propriedades: em cada ponto de M, os campos L1 e L2 são linearmente independentes , e seu colchete [L1, L2](x) é uma combinação linear de L1(x) e L2(x). Para tratar da resolubilidade local, nos utilizamos da teoria dos espaços Bp,k e operadores de força constante. Seguindo para a resolubilidade semiglobal, estudamos a folheação gerada por L1 e L2: mostramos que neste caso as folhas possuem estrutura de variedade complexa, o que nos permite obter um panorama bastante completo sobre o problema. Para encerrar, provamos que L é globalmente resolúvel se e somente se for semiglobalmente resolúvel e M for L-convexa; exibimos condições suficientes para que isto ocorra. / In this work we shall study the smooth solvability of smooth complex vector fields L = L1 + iL2 on a smooth manifold M, assuming the following properties: for any point of M, L1 and L2 are linearly independent and [L1,L2] is a linear combination of L1 and L2. Discussing local solvability, we shall employ the theory of Bp,k Spaces and Operators of Constant Strength. Moving on to Semi-Global Solvability, we shall study the foliation that is generated by L1 and L2: we prove that in this case the leaves are actually complex manifolds, which allow us to obtain an wide comprehension of the problem. Finally, we show that L is globally solvable if and only if it is semi-globally solvable and M is L-convex; we then exhibit sufficient conditions in order to it occur.
|
2 |
Resolubilidade semiglobal e global para uma classe de campos vetoriais complexos em variedades diferenciáveis / Semi-global and global solvability for a class of complex vector fields in differentiable manifoldsBruno de Lessa Victor 03 March 2017 (has links)
Neste trabalho estudamos a resolubilidade suave de campos vetoriais complexos suaves da forma L = L1 + iL2, em uma variedade M, com as seguintes propriedades: em cada ponto de M, os campos L1 e L2 são linearmente independentes , e seu colchete [L1, L2](x) é uma combinação linear de L1(x) e L2(x). Para tratar da resolubilidade local, nos utilizamos da teoria dos espaços Bp,k e operadores de força constante. Seguindo para a resolubilidade semiglobal, estudamos a folheação gerada por L1 e L2: mostramos que neste caso as folhas possuem estrutura de variedade complexa, o que nos permite obter um panorama bastante completo sobre o problema. Para encerrar, provamos que L é globalmente resolúvel se e somente se for semiglobalmente resolúvel e M for L-convexa; exibimos condições suficientes para que isto ocorra. / In this work we shall study the smooth solvability of smooth complex vector fields L = L1 + iL2 on a smooth manifold M, assuming the following properties: for any point of M, L1 and L2 are linearly independent and [L1,L2] is a linear combination of L1 and L2. Discussing local solvability, we shall employ the theory of Bp,k Spaces and Operators of Constant Strength. Moving on to Semi-Global Solvability, we shall study the foliation that is generated by L1 and L2: we prove that in this case the leaves are actually complex manifolds, which allow us to obtain an wide comprehension of the problem. Finally, we show that L is globally solvable if and only if it is semi-globally solvable and M is L-convex; we then exhibit sufficient conditions in order to it occur.
|
3 |
Resolubilidade perto do conjunto característico para uma classe de operadores diferenciais parciais de primeira ordem / Solvability near the characteristic set for a clas of partial differential operators of the first orderCerniauskas, Wanderley Aparecido 25 August 2014 (has links)
Seja L = ∂ /∂t + (a(x) + ib(x))∂/∂x, b ≢ 0, um campo vetorial complexo definido em A∊ = (-∊ , ∊) × S1, ∊ > 0, sendo a, b ∈ C∞((-∊ , ∊);ℝ) e (x, t) ∈ (-∊ ∊) × S1. Assuma que b-1(0) = {0}. Este trabalho trata da resolubilidade perto do conjunto característico {0} × S1; da equação Lu = pu + f, p, f ∈ C∞ (A∊). A relação entre as ordens de anulamento das funções a e b em x = 0 e certas médias da função p tem influência na resolubilidade. / Let L = ∂ /∂t + (a(x) + ib(x))∂/∂x, b ≢ 0, be a complex vector field defined in A∊ = (-∊ , ∊) × S1, ∊ > 0, where a, b ∈ C∞((-∊ , ∊);ℝ) and (x, t) ∈ (-∊ ∊) × S1. Assume that b-1(0) = {0}. This work deals with the volvability near the characteristic set {0} × S1; of equation. Lu = pu + f, p, f ∈ C∞ (A∊). The interplay between the orders of vanishing of the functions a and b at x = 0 and certain averages of the function p has influence in the solvability.
|
4 |
Resolubilidade perto do conjunto característico para uma classe de operadores diferenciais parciais de primeira ordem / Solvability near the characteristic set for a clas of partial differential operators of the first orderWanderley Aparecido Cerniauskas 25 August 2014 (has links)
Seja L = ∂ /∂t + (a(x) + ib(x))∂/∂x, b ≢ 0, um campo vetorial complexo definido em A∊ = (-∊ , ∊) × S1, ∊ > 0, sendo a, b ∈ C∞((-∊ , ∊);ℝ) e (x, t) ∈ (-∊ ∊) × S1. Assuma que b-1(0) = {0}. Este trabalho trata da resolubilidade perto do conjunto característico {0} × S1; da equação Lu = pu + f, p, f ∈ C∞ (A∊). A relação entre as ordens de anulamento das funções a e b em x = 0 e certas médias da função p tem influência na resolubilidade. / Let L = ∂ /∂t + (a(x) + ib(x))∂/∂x, b ≢ 0, be a complex vector field defined in A∊ = (-∊ , ∊) × S1, ∊ > 0, where a, b ∈ C∞((-∊ , ∊);ℝ) and (x, t) ∈ (-∊ ∊) × S1. Assume that b-1(0) = {0}. This work deals with the volvability near the characteristic set {0} × S1; of equation. Lu = pu + f, p, f ∈ C∞ (A∊). The interplay between the orders of vanishing of the functions a and b at x = 0 and certain averages of the function p has influence in the solvability.
|
Page generated in 0.0465 seconds