Spelling suggestions: "subject:"emiconductor doping."" "subject:"demiconductor doping.""
71 |
Ex situ variable angle spectroscopic ellipsometry studies on chemical vapor deposited boron-doped diamond films layered structure and modeling aspects /Dudipala, Ajay Prasad Reddy Gupta, Sanju. January 2008 (has links)
The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Title from PDF of title page (University of Missouri--Columbia, viewed on October 7, 2009) Thesis advisor: Dr. Sanju Gupta. Includes bibliographical references.
|
72 |
Growth and characterization of diamond thin films : effects of substrate pretreatment, doping, and selective deposition /Mirzakuchaki, Sattar, January 1996 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1996. / Typescript. Vita. Includes bibliographical references (leaves 128-135). Also available on the Internet.
|
73 |
Growth and characterization of diamond thin films effects of substrate pretreatment, doping, and selective deposition /Mirzakuchaki, Sattar, January 1996 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1996. / Typescript. Vita. Includes bibliographical references (leaves 128-135). Also available on the Internet.
|
74 |
First principles modeling of arsenic and fluorine behavior in crystalline silicon during ultrashallow junction formationHarrison, Scott Anthony, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
|
75 |
High pressure optical studies in conjugated polymers /Yang, Shu-Chun, January 1999 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1999. / Typescript. Vita. Includes bibliographical references (leaves 147-152). Also available on the Internet.
|
76 |
Optical studies of ion-bombarded gallium arsenideFeng, Guofu January 1989 (has links)
The present work studies the disorder in ion-implanted and ion-etched GaAs semiconductors. The primary targets in this study consist of two types of systems:45-keV Be⁺-implanted GaAs and low-energy Ar⁺-etched GaAs. Electronic and lattice structural disorder in these systems are investigated by means of optical reflectivity measurements and Raman-scattering techniques.
Visible-ultraviolet reflectivity measurements have identified finite-size effects on the interband electronic excitations in microcrystalline GaAs (μ-GaAs), which is known from previous work to exist in Be⁺-implanted disordered GaAs. The optical properties of μ-GaAs differ appreciably from those of the bulk crystal, the difference increasing with L⁻¹, the inverse of the characteristic size of the microcrystals. The linewidths of the prominent interband features E₁, E₁+∆₁, and E₂ increase linearly and rapidly with inverse microcrystal size: Γ<sub>μ</sub> = Γ₀ + AL⁻¹, where Γ₀ (Γ<sub>μ</sub>) is the linewidth in the bulk crystal (μ-GaAs), and A is a constant. A simple theory is proposed which semi-quantitatively accounts for the observed size effects. Small microcrystal size implies a short time for an excited carrier to reach, and to be scattered by, the microcrystal boundary, thus limiting the excited-state lifetime and broadening the excited-state energy. An alternative uncertainty-principle argument is also given in terms of the confinement-induced k-space broadening of electron states.
The near-surface structural disorder in Ar⁺-etched GaAs has been investigated using a combination of Raman scattering and optical reflectivity measurements. The longitudinal optical (LO) Raman mode in the ion-damaged medium preserves its crystalline lineshape, indicating that the crystalline long-range order is retained in the disordered structure. The structural damage is depth-profiled with LO Raman intensity measurements together with wet chemical etching. A graded damage model proposed in the work well explains the observed LO intensity in the ion-damaged, chemical-etched GaAs. The reflectivity measurements qualitatively support the Raman scattering findings. In addition, the reflectivity spectrum exhibits a red-shift of the peaks associated with the interband electronic transitions. Such a peak shift is likely to arise from the electron-defect interaction in the disordered surface medium. / Ph. D.
|
77 |
One-Dimensional Nanostructure and Sensing Applications: Tin Dioxide Nanowires and Carbon NanotubesTran, Hoang Anh 12 February 2016 (has links)
The key challenge for a nanomaterial based sensor is how to synthesize in bulk quantity and fabricate an actual device with insightful understanding of operational mechanisms during performance. I report here effective, controllable methods that exploit the concepts of the "green approach" to synthesize two different one-dimensional nanostructures, including tin oxide nanowires and carbon nanotubes. The syntheses are followed by product characterization and sensing device fabrications as well as sensor performance understanding at the molecular level. Sensor-analyte response and recovery kinetics are also presented.
The first part of the thesis describes bulk-scale synthesis and characterization of tin oxide nanowires by the molten salt synthetic method and the nanowire doping with antimony (n-types) and lithium. The work builds on the success of using n-doped SnO2 nanoparticles to selectively detect chlorine gas at room temperature. Replacing n-doped nanoparticles with n-doped nanowires reduces the number of inter-particle electron hops between sensing electrodes. The nanowire based sensors show unprecedented 5 ppb detectability of corrosive Cl2 gas concentration in air. At the higher range, 10 ppm of Cl2 gas leads to a 250 fold increase in the device resistance. During sensor recovery, FT-IR studies show that dichlorine monoxide (Cl2O) and chlorine dioxide (ClO2) are the desorbing species. Long term stability of devices is affected by lattice oxygen vacancies replaced by chlorine atoms.
Bulk-scale synthesis of multiwall carbon nanotube (MWCNTs) was achieved by a novel inexpensive synthetic method. The green chemistry method uses the non-toxic and easy to handle solid carbon source naphthalene. The synthesis is carried out by simply heating naphthalene and organometallic precursors as catalysts in a sealed glass tube. Synthesis at 610º C leads to MWCNTs of 50 nm diameter and lengths exceeding well over microns. MWCNT doping is attempted with nitrogen (n-type) and boron (p-type) precursors. Palladium nanoparticles decorated on as-synthesized MWCNTs are employed for specific detection of explosive hydrogen gas with concentrations far below the explosive concentration limits. During performance, the sensor exhibits abnormal response behaviors at hydrogen gas concentrations higher than 1%. A model of charge carrier inversion, brought about by reduction of MWCNT by hydrogen molecules dissociated by Pd nanoparticles is proposed.
|
78 |
Metal-organic chemical vapor deposition growth and nitrogen doping of ZnO thin films. / CUHK electronic theses & dissertations collectionJanuary 2008 (has links)
Electrical and optical properties of the (N,Ga)-doped ZnO films have been studied. Three growth regions were identified to obtain ZnO films with different conduction types depending on the N/Ga flux ratio in doping process. The PL spectra show evident competition between neutral-donor bound exciton (D0X) and neutral-acceptor bound exciton (A0X) according to the N/Ga ratio. From the temperature-dependent PL spectra, the nitrogen acceptor level was identified to be about 126 meV in (N,Ga)-doped p-type ZnO. / For nitrogen doping of ZnO thin films, DMHy was used as the nitrogen dopant source. A narrow temperature window from about 500°C to 550°C for efficient nitrogen doping was identified. However, p-type ZnO was not obtained by nitrogen mono-doping, which results from the low solubility of N and the self-compensating effect of native defects, and/or N-induced complexes. By co-doping N with Ga in proper ratios, p-type ZnO films were successfully achieved with a high hole concentration of 3.51 x 1017 --2.41 x 1018cm-3, Hall mobility of 1.1 --4.29 cm2/V-s and resistivity of 0.6 -- 16.2 O cm. But the conduction type critically depends on the growth conditions. Based on the successfully fabrication of (N,Ga)-doped p-type ZnO, a p-ZnO:(N,Ga)/n-ZnO homojunction was fabricated. The I-V measurement shows clear rectifying behavior with a turn-on voltage of about 3.7 V. / Further investigation of the effect of N/Ga doping ratios on the conduction type of ZnO samples reveals that successful doping depends much on engineering a stable local chemical bonding environment. Under mono-doping conditions (via N-Zn4), nitrogen solubility is limited and nitrogen acceptors are readily compensated by native donors and/or N-related donors; under appropriate N/Ga flux ratios, cluster-doping (via Ga-N3O and Ga-N4) can be realized to achieve p-type ZnO; while excessively high N/Ga ratios cause the doped ZnO n-type conductivity again, which may be because that under excessively high N/Ga ratio range, N-Zn4 configuration dominates and thus cause more N-related donors and degrade the ZnO film quality, similar as the mono-doping case. By tuning the N/Ga ratio in doping, it is expected to create appropriate chemical environments to enhance the formation of desired dopant species for stable p-type ZnO. / In this work, Metal-organic chemical vapour deposition (MOCVD) growth of ZnO and its p-type doping have been studied. The group V element N was used as primary dopant to make ZnO p-type. In the growth of ZnO by MOCVD, it was found that the structural and morphological properties of deposited ZnO strongly depend on growth conditions. Low VI/II ratio and high growth rate favor the growth of ZnO nanostructures (nanowires, nanobelts); while high VI/II ratio and low growth rate favor the growth of ZnO thin films. / The semiconductor ZnO is currently gaining intense interest in the research community because of its prospect in optoelectronic applications, such as blue/ultraviolet emitters and detectors, and high speed electronic devices. However, making reliable and reproducible p-type ZnO is still a bottleneck, which impedes the practical application of ZnO-based devices. The difficulty is mainly due to the self-compensation effect of native defects and the low solubility limit of acceptor dopants. Although substantial research is currently being carried out worldwide towards this goal, the effective p-type dopant and its doping process have not yet been identified. / Wang, Hui. / "Apr 2008." / Adviser: Aaron H. P. Ho. / Source: Dissertation Abstracts International, Volume: 70-03, Section: B, page: 1860. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
|
79 |
The electrical and optical characterization of the InGaAs/InP alloy systemTowe, Elias D January 1981 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Elias D. Towe. / M.S.
|
80 |
Defect chemistry and charge transport in niobium-doped titanium dioxideSheppard, Leigh Russell, Materials Science & Engineering, Faculty of Science, UNSW January 2007 (has links)
The present project has made a comprehensive assessment of the effect of Nb doping on various charge-transfer related properties of TiO2. Of particular focus, the electrical properties of Nb-doped TiO2 (0.65 at %) have been investigated using the simultaneous measurement of electrical conductivity and thermoelectric power. This investigation was undertaken at elevated temperatures (1073 K -- 1298 K) in equilibrium with a gas phase of controlled oxygen activity (10-10 Pa < p(O2) < 75 kPa). In addition, the effect of segregation on the surface versus bulk composition of Nb-doped TiO2 was also investigated at a function of temperature and oxygen activity. Specifically, the following determinations were undertaken: The effect of oxygen activity, p(O2) and temperature on both electrical conductivity and thermoelectric power The effect of Nb on the defect disorder and related electrical properties of TiO2 The determination of equilibration kinetics and the associated chemical diffusion data for Nb-doped TiO2 The determination of Nb bulk diffusion in TiO2 The effect of p(O2), temperature and dopant content on Nb segregation and the related surface composition of Nb-doped TiO2 The obtained electrical properties enable the determination of a defect disorder model for Nb-doped TiO2, which may be considered within the following p(O2) regimes: Strongly Reduced Regime. In this regime, the predominant ionic defect was anticipated to be oxygen vacancies compensated electronically by electrons. While the transition to this regime (from higher p(O2)) was clearly observed, the predominant defect disorder existing beyond this transition was not confirmed due to an inability to obtain sufficiently low oxygen activity. Metallic-type conductivity behaviour was observed within this transition region. Reduced Regime I. In this regime, the predominate defect disorder defined by the electronic compensation of incorporated Nb ions by electrons was clearly observed. Reduced Regime II. In this regime, the predominate defect disorder defined by the ionic compensation of incorporated Nb ions by quadruply-charged titanium vacancies, was clearly observed. The present project included the determination of diffusion data which included: Temperature dependence of 93Nb tracer diffusion in single crystal TiO2 over the temperature range 1073 K -- 1573 K Chemical diffusion coefficient over the temperature range 1073 K -- 1298 K and oxygen activity range, 10-10 Pa < p(O2) < 75 kPa These pioneering studies are significant as they enable the prediction of the processing conditions required to reliably 1) incorporate Nb into the TiO2 lattice, and 2) achieve equilibrium with the gas phase. Finally, the present project included investigations on the effect of Nb segregation on the surface composition of Nb-doped TiO2, with the following outcomes: Due to segregation, the surface can be significantly enriched in Nb compared to the bulk The extent of enrichment increases as the bulk Nb content or the oxygen activity is decreased Following enrichment, the surface Nb concentration could be sufficiently high to assume a unique surface phase The outcomes of the present project are significant as they can enable the processing of TiO2 with enhanced charge transport and controlled surface properties.
|
Page generated in 0.1223 seconds