Spelling suggestions: "subject:"semiconductor nuclear counters"" "subject:"emiconductor nuclear counters""
1 |
Development and characterization of a solid state detector array for a large scale gamma-ray imaging system /Bastani, Bamdad January 1980 (has links)
No description available.
|
2 |
Modeling of displacement damage in silicon carbide detectors resulting from neutron irradiationKhorsandi, Behrooz, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 142-153).
|
3 |
Development of wide bandgap solid-state neutron detectorsMelton, Andrew Geier 19 May 2011 (has links)
In this work novel solid-state neutron detectors based on Gallium Nitride (GaN) have been produced and characterized. GaN is a radiation hard semiconductor which is commonly used in commercial optoelectronic devices. The important design consideration for producing GaN-based neutron detectors have been examined, and device simulations performed. Scintillators and p-i-n diode-type neutron detectors have been grown by metalorganic chemical vapor deposition (MOCVD) and characterized. GaN was found to be intrinsically neutron sensitive through the Nitrogen-14 (n, p) reaction. Neutron conversion layers which produce secondary ionizing radiation were also produced and evaluated. GaN scintillator response was found to scale highly linearly with nuclear reactor power, indicating that GaN-based detectors are suitable for use in the nuclear power industry.
This work is the first demonstration of using GaN for neutron detection. This is a novel application for a mature semiconductor material. The results presented here provide a proof-of-concept for solid-state GaN-based neutron detectors which offer many potential advantages over the current state-of-the-art, including lower cost, lower power operation, and mechanical robustness. At present Helium-3 proportional counters are the preferred technology for neutron detection, however this isotope is extremely rare, and there is a global shortage. Meanwhile demand for neutron detectors from the nuclear power, particle physics, and homeland security sectors requires development of novel neutron detectors which are which are functional, cost-effective, and deployable.
|
4 |
Experimental study of the response of semiconductor detectors for EDXRF analysisValaparla, Sunil K. January 2009 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2009. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
|
Page generated in 0.0751 seconds