Spelling suggestions: "subject:"semiconductors'trade térmica"" "subject:"semiconductors'trade térmico""
1 |
On the fundamental absorption of excitonic and non-excitonic semiconductors: an optoelectronic and thermal approachLizárraga Olivares, Kevin Angello 28 August 2023 (has links)
In thepresent work, we study the optical properties of semiconductors near the fundamental absorption taking into account disorder induced tail states. In particular, we pay special attention to GAAs and lead halide perovskites. We address existing models for the description of the absorption spectra, and extend them in the band fluctuations framework. We start with traditional semiconductors where we have developed our models inspired in Jellison-Modine procedure (Tauc-Lorentz model).These models are tested on direct,indirect and amorphous band gap materials such as the ones of the group III −V family. Later, we continue the discussion with the inclusion of the Sommerfeld enhancement factor for understanding the nature of excitonic semiconductors. Here, the Elliott model is modified through the band fluctuations procedure in order to obtain an analytic expression for the imaginary part of the electrical permittivity. This new model accurately describes the band gap and binding energy of systems like GaAs,MAPbBr3, MAPbI3 and MAPbI3−xClx. Furthermore,the impact of the sample temperature on optical parameters such as the band gap can provide information regarding the thermal expansion and th eelectron-phon on interaction in the solid. In particular,if the material exhibits a high electron-phon on coupling,like in the cases of the polar semiconductors, the model describing the exciton can no longer rely on the Hydrogen-like picture, but instead it must be computed with a theory considering exciton-polarons. In the latter case, the exciton is dressed by a cloudofphonons that lower its binding energy. Remarkably, our model for excitonic materials correctly predicts the exciton-polaron binding energies of lead halide perovskites andt heir carrier’s effective massees. Lastly, we emphasize the powerful relation between the optical properties and the thermal properties. Notably, we found a good agreement among our predicted expressions,using the Debye’s model, with other specific heat experimental results.
|
2 |
La relación intrínseca entre la descripción del ancho de banda y las propiedades térmicas en semiconductores : el caso del a- Si:H E In2O3Ventura Ponce, Enrique Eduardo 05 July 2022 (has links)
En la literatura los análisis ópticos y térmicos presentan una desconexión, a pesar de tener un
gran ámbito en común desde el punto de vista teórico. La evolución del ancho de banda respecto
de la temperatura es un factor muy importante al momento de determinar dicha conexión, ya
que, a través de la interacción electrón-fonón se puede derivar la temperatura de Debye que es
el nexo entre el ancho de banda óptico y los efectos térmicos. Tal es así que aquí se presentan
diferentes teorías, como son las propuestas por Ullrich, O’leary, Jackson, Guerra, y Zanatta para
estudiar la absorción en semiconductores, y sus versiones extendidas: Tauc-Lorentz, O’leary-
Lorentz o Guerra-Lorentz. Para los efectos térmicos se exploran ajustes que provienen de la
interacción de los fonones como son los de los modelos de Varshni, Pässler o Bose-Einstein que
describen el comportamiento del ancho de banda óptico con la temperatura del material. Este
nexo entre los efectos ópticos y térmicos es aplicado después en los materiales semiconductores
como el a-Si:H e In2O3, que son, entre otros, importantes para el desarrollo de tecnologías
fotovoltaicas como celdas solares o transistores (ITO). Finalmente probamos que los resultados
ópticos y térmicos guardan una buena concordancia, que da lugar a nuevos tipos de
acercamientos experimentales a ambas propiedades.
|
Page generated in 0.1157 seconds