• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • Tagged with
  • 12
  • 12
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Design of Radio-Frequency Filters and Oscillators in Deep-Submicron CMOS Technology

Xiao, Haiqiao 15 April 2008 (has links)
Radio-frequency filters and oscillators are widely used in wireless communication and high-speed digital systems, and they are mostly built on passive integrated inductors, which occupy a relative large silicon area. This research attempted to implement filters and oscillators operating at 1-5 GHz using transistors only, to reduce the circuits’ area. The filters and oscillators are designed using active inductors, based on the gyrator principle; they are fabricated in standard digital CMOS technology to be compatible with logic circuits and further lower the cost. To obtain the highest operating frequency, only parasitic capacitors were used. Two new active-inductor circuits are derived from this research, labeled allNMOS and all-NMOS-II. The all-NMOS active inductor was used to design high-Q bandpass filters and oscillators, which were fabricated in TSMC’s 0.18-µm digital CMOS process. The highest center frequency measured was 5.7 GHz at 0.20-µm gate length and the maximum repeatably measured Q was 665. 2.4-GHz circuits were also designed and fabricated in 0.40-µm gate length. The all-NMOS-II circuit has superior linearity and signal fidelity, which are robust against process and temperature variations, due to its novel structure. It was used in signal drivers and will be fabricated in commercial products. Small-signal analysis was conducted for each of the active-inductor, filter and oscillator circuits, and the calculated performance matches those from simulations. The noise performance of the active inductor, active-inductor filter and oscillator was also analyzed and the calculated results agree with simulations. The difference between simulation and measured results is about 10% due to modeling and parasitic extraction error. The all-NMOS active-inductor circuit was granted a US patent. The US patent for all-NMOS-II circuit is pending. This research generated three conference papers and two journal papers.
12

The Role of Temperature in Testing Deep Submicron CMOS ASICs

Long, Ethan Schuyler 01 January 2003 (has links)
Among the many efforts to improve the IC test process are tests that attempt to differentiate between healthy and defective or low reliability ICs by manipulating the operating conditions of the IC being tested. This thesis attempts to improve the common understanding of multiple and targeted temperature testing by evaluating work published on the subject to date and by presenting previously unpublished empirical observations. The empirical observations are made from SCAN and LBIST based MinVDD measurements, Static IDD measurements, as well as parametric measurements of transistor characteristics. The test vehicles used are 0.25μm and 0.18μm CMOS ASICs fabricated by LSI Logic. An IC’s performance is bound by a three dimensional space defined by VDD, frequency, and temperature. A model is presented to explain the boundaries of the performance region in terms of the ability of the IC’s constituent transistors to provide power and the Zero-Temperature-Coefficient (ZTC). Also, it is determined that multiple temperature testing can add new tests to current test suites to improve the resolution between healthy and defective ICs.

Page generated in 0.0924 seconds